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Abstract

In this paper we characterize the d-dimensional dual hyperovals in
PG(2d + 1, 2) that can be obtained by Yoshiara’s construction [21] from
quadratic APN functions and state a one-to-one correspondence between
the extended affine equivalence classes of quadratic APN functions and
the isomorphism classes of these dual hyperovals.

1 Introduction

Motivated by applications in cryptography, a lot of research has been done to
construct functions which are “as nonlinear as possible” (see e.g. [7, 12] for a
recent overview and references). One class of such functions are almost perfect
nonlinear (APN) functions.

Definition 1. A function f : Fn
2 → Fn

2 is called APN if and only if for all
a ∈ Fn

2 \ {0} and b ∈ Fn
2 the equation f(x + a) + f(x) = b has at most two

solutions. An APN function is called quadratic if, for every a, Bf (a, x) :=
f(x+ a) + f(x) + f(a) + f(0) is a linear function.

Another important class of nonlinear functions are almost bent (AB) func-
tions. AB functions can exist only if n is odd. It is well known that any AB
function is also APN (see [6]), but not vice versa. However, for odd n, any
quadratic APN function must be AB (see [8]).

APN functions have links to other mathematical objects. An APN function
is equivalent to a binary error correcting [2n, 2n − 2n − 1, 6]2 code, which is
contained in the dual of the first order Reed-Muller code (see [8]).

There are also links to finite geometry [14, 16, 21]. In this paper we focus
on the link with dual hyperovals, objects introduced by Huybrechts and Pasini
[15]. The reader who is not familiar with projective geometries may wish to
read section 2.1 first.

Definition 2. A set D of d-dimensional subspaces of a projective geometry
PG(k, q), with |D| = 1 + (qd+1 − 1)/(q − 1), is called a (d-dimensional) dual
hyperoval if the intersection of any two distinct elements of D is a point and
any three have an empty intersection.
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The projective geometry generated by the subspaces of D is called its ambient
space.

The smallest space in which a d-dimensional dual hyperoval can exist is
PG(2d, q). Cooperstein and Thas [9] construct dual hyperovals in PG(2d, 2)
with the property

⋃
D∈DD = PG(2d, 2) \ Y , for some (d− 1)-dimensional sub-

space Y . Del Fra [10] shows, that every hyperoval in PG(2d, 2) is of this type.

In [21] Yoshiara gives the following construction of d-dimensional dual hy-
perovals Df in PG(2d+ 1, 2) using a quadratic APN function f : Fd+1

2 → Fd+1
2

Df := {Da|a ∈ Fd+1
2 } with Da := {(x,Bf (a, x))|0 6= x ∈ Fd+1

2 }. (1)

Here Bf (a, x) = f(x+ a) + f(x) + f(a) + f(0) as defined in Definition 1.
He proves that the dual hyperoval obtained from the APN function from

[11] is not isomorphic to the known dual hyperovals. Moreover he states that
Taniguchi’s d-dimensional dual hyperovals in PG(2d+1, 2) [18, 20] that can not
be obtained in this way from an APN function.

In this paper we characterize the d-dimensional dual hyperovals in PG(2d+
1, 2) that can be obtained by Yoshiara’s construction.

Definition 3. A d-dimensional dual hyperoval D in PG(2d+1, 2) is an APN-
dual hyperoval if and only if the following hold:

1. There is a d-dimensional subspace Y such that Y ∩
⋃

D∈DD = ∅.

2. For any mutually different A,B,C ∈ D we have that

(A ∩B) + (B ∩ C) + (C ∩A) ∈ Y,

where for distinct points a and b of PG(2d+ 1, 2), we denote by a+ b the
point on the line joining a and b distinct from a and b.

Our main result is a one-to-one correspondence between the extended affine
equivalence classes of quadratic APN functions (see Definition 5) and the iso-
morphism classes of APN-dual hyperovals (see Definition 4):

Theorem 1. For any quadratic APN function f : Fd+1
2 → Fd+1

2 the set Df as
defined in equation (1) is a d-dimensional APN-dual hyperoval and for any d-
dimensional APN-dual hyperoval D we can construct a quadratic APN function
fD : Fd+1

2 → Fd+1
2 , such that:

• If f, f ′ are extended affine equivalent quadratic APN functions then Df

and Df ′ are isomorphic dual hyperovals.

• If d ≥ 2 and if two APN-dual hyperovals D and D′ are isomorphic then
fD and fD′ are extended affine equivalent.

• We have that D is isomorphic to DfD and for d ≥ 2 that f is extended
affine equivalent to fDf

.
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An immediate consequence is that every new quadratic APN function gives
rise to a new dual hyperoval. The only ”classical” APN functions that are
quadratic are the Gold functions [13, 17]. In [21, Proposition 3.2] Yoshiara
mentions that his dual hyperovals (see [19]) are equivalent to those obtained
from the Gold functions and that those are the only known d-dimensional dual
hyperovals in PG(2d + 1, 2) which can arise from APN functions. The APN
functions are classified up to n = 5 [2]. All quadratic APN functions in this
range are equivalent to the Gold functions.

Recently progress has been made in finding new APN functions. We just
mention results on quadratic APN functions which are proven to be inequivalent
to the Gold functions and refer again to [7, 12] as a reference on further known
APN functions.

There are three infinite families of quadratic APN functions [5, 4] (see also
[1]). In [3, 12] more than 40 inequivalent quadratic APN functions for n ≤ 9
can be found . And last but not least there is the sporadic APN binomial for
n = 10 [11] used by Yoshiara [21].

In the next section we will introduce the needed notation and give some
auxiliary results. In the last section we will prove Theorem 1.

2 Preparatory section

2.1 Some notation

Let q be a prime power, Fq the finite field with q elements, and Fl
q the l-

dimensional vector space over Fq.
A k-dimensional projective geometry over Fq (PG(k, q) for short) can

be defined using its underlying vector space Fk+1
q . For 0 ≤ m ≤ k, the m-

dimensional subspaces of PG(k, q) are the (m+ 1)-dimensional subspaces of
Fk+1

q . Observe the shift in the dimension. The 0-, 1-, respectively 2-dimensional
subspaces of PG(k, q) are called points, lines and planes.

Containment and intersection of subspaces of PG(k, q) is defined by contain-
ment and intersection of the corresponding subspaces of the underlying vector
space.

In this paper, we work in PG(2d + 1, 2). The points of PG(2d + 1, 2)
are in one-to-one correspondence with the non-zero vectors of F2d+2

2 (as a 1-
dimensional subspace of F2d+2

2 consists only of the zero vector and one non-zero
vector). This also justifies the notion a+ b in Definition 3; the vector in F2d+2

2

corresponding to a+ b is the sum of the vectors corresponding to a and b.
The automorphisms of PG(2d + 1, 2) correspond to the invertible linear

maps from F2d+2
2 to F2d+2

2 .
Frequently, we denote a point in PG(2d + 1, 2) by a pair (x, y) ∈ (Fd+1

2 ×
Fd+1

2 ) \ {(0, 0)}, by identifying Fd+1
2 × Fd+1

2 with F2d+2
2 . The automorphisms

then will be denoted as 2×2 block matrices with the blocks being (d+1)×(d+1)
matrices over F2.

We call a function B : Fd+1
2 ×Fd+1

2 → Fd+1
2 symmetric if B(x, y) = B(y, x),

symplectic if B(x, x) = 0 and bilinear if B(x + x′, y) = B(x′, y) + B(x′, y)
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and B(x, y + y′) = B(x, y) +B(x, y′).
The frequently used function Bf (x, y) := f(x + y) + f(x) + f(y) + f(0) is

symmetric and symplectic. If f is quadratic then by definitionBf is also bilinear.

2.2 Auxiliary results

The following property of dual hyperovals follows from a simple counting argu-
ment:

Proposition 1. Let D be a dual hyperoval. For any point P ∈
⋃

D∈DD there
is exactly one pair D 6= D′ ∈ D such that P = D ∩D′.

The next proposition shows that the notion of APN-dual hyperovals (Defi-
nition 3) is well defined.

Proposition 2. Let D be a dual hyperoval and A,B,C ∈ D mutually different.
Then

1. the points c := A ∩B, a := B ∩ C and b := C ∩A are not collinear,

2. the point P (A,B,C) := a+ b+ c is the (unique) point in the plane 〈a, b, c〉
which is on none of the lines ab, bc and ca.

Proof. 1: If a, b, c would be collinear, then, as a, b ∈ C and C is a subspace, we
have that also c ∈ C. Repeating this argument for A,B shows that the whole
line is in A ∩B ∩ C, a contradiction to the definition of a dual hyperoval.

2: From 1. we see that P (A,B,C) lies in the Fano plane 〈a, b, c〉. The
statement follows by direct verification.

Lemma 1. If f is a quadratic APN function, then Df is a d-dimensional APN-
dual hyperoval. If d ≥ 2 then the ambient space of Df is PG(2d+ 1, 2).

Proof. That Df is a dual hyperoval is [21, Theorem 2.1 (1)]. The result con-
cerning the ambient space is [21, Proposition 2.2].

It only remains to prove the simple fact that Df is an APN-dual hyperoval.
By definition there are no points in the subspace Y = {(0, y)|y ∈ Fd+1

2 \ {0}}.
Direct verification shows that Da ∩Db = (a+ b, Bf (a, b)).

(Da ∩Db) + (Db ∩Dc) + (Dc ∩Da) = (0, Bf (a, b) +Bf (b, c) +Bf (c, a)) (2)

Hence Df is an APN-dual hyperoval with respect to Y .

Lemma 2. If f is a quadratic function and Df is a dual hyperoval, then f is
APN.

Proof. Assume f is not APN but Df is a dual hyperoval. Then there is some
a 6= 0, and some b, such that Bf (x, a) = f(x+a)+f(a)+f(a)+f(0) = b has more
than two solutions, say x = u, v, w. Then the point (a,Bf (x, a)) ∈ Du∩Dv∩Dw

for three mutually different u, v, w, contradicting Proposition 1.

Lemma 3. Let d ≥ 2 and D be an APN-dual hyperoval constructed from an
APN function f using (1) (so D = Df ). Then the subspace Y of the APN-dual
hyperoval in Definition 3 is uniquely determined.

4



Proof. Let Pf := {P (A,B,C)|A,B,C ∈ Df mutually different}. In (2) we have
shown, that Pf = {(0, Bf (a, b) + Bf (b, c) + Bf (c, a))|a 6= b 6= c ∈ Fd+1

2 }. Using
that Bf is a symmetric, symplectic and bilinear function we see that

Bf (a, b) +Bf (b, c) +Bf (c, a) = Bf (a+ c, b) +Bf (c, a) = Bf (a+ c, a+ b).

So we have Pf = {(0, Bf (u, v))|u, v ∈ Fd+1
2 \ {0}}.

The subspace Y contains Pf . If there would be another d-dimensional sub-
space Y ′ with this property, we would have Pf ⊆ Y ∩ Y ′, a (d− 1)-dimensional
space. As the elements of Df are defined as Da := {(x,Bf (a, x))|x 6= 0 ∈ Fm

2 }
this would imply that the ambient space of Df is PG(2d,2), contradicting
Lemma 1.

Dual hyperovals are sets of subspaces in PG(k, q). Isomorphy is defined in
the natural way.

Definition 4. Two dual hyperovals in PG(k, q) are called isomorphic if there
is an automorphism of PG(k, q) that maps one to the other.

There are several concepts of equivalence for APN functions. We call the set
of points Gf := {(1, x, f(x))|x ∈ F2n} ⊂ PG(2n, 2) the graph of the function
f and define the affine subspaces X := {(1, x, 0)|x ∈ F2n}, Y := {(1, 0, y)|y ∈
F2n} ⊂ PG(2n, 2).

Definition 5. Two APN functions f, g : Fn
2 → Fn

2 are called:

• CCZ-equivalent, if there is an automorphism of PG(2n, 2) mapping Gf

to Gg,

• extended affine (EA) equivalent, if there is an automorphism of PG(2n, 2),
fixing the subspace Y , which maps Gf to Gg,

• affine equivalent, if there is an automorphism of PG(2n, 2), fixing the
subspaces X and Y , which maps Gf to Gg.

On the affine points (1, x, y) we can describe the automorphism by(
x
y

)
7→
(
A B
C D

)(
x
y

)
+
(
u
v

)
.

We have EA-equivalence if and only if B = 0, and affine equivalence if and only
if B = C = 0.

Affine equivalent functions are also EA-equivalent. EA-equivalent functions
are also CCZ-equivalent. The algebraic degree of an APN function is an invari-
ant under EA-equivalence but not under CCZ-equivalence. As we will focus in
this article on quadratic APN functions (i.e. functions of algebraic degree 2),
EA-equivalence is the appropriate concept here.

An other frequently found definition of EA-equivalence is the following; f
and g are called EA-equivalent if there exist invertible affine mappings A1, A2

and a linear (or affine) mapping L such that

g(x) = A2f(A1(x)) + L(x).

This definition is equivalent with the one given above as we can identify

A1(x) = A−1(x+ u), A2(y) = D(y) + v + CA−1u and L(x) = CA−1x.
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Lemma 4. If f, g are EA-equivalent quadratic APN functions, then the dual
hyperovals D := Df and D′ := Dg are isomorphic.

If the EA-equivalence is given by the mapping(
x
y

)
7→
(
A 0
C D

)(
x
y

)
+
(
u
v

)
(3)

the isomorphism of the dual hyperovals is given by:(
x
y

)
7→
(
A 0
0 D

)(
x
y

)
Proof. We will use the following identity:

f(a+ b+ c) + f(a+ b) + f(a+ c) + f(b+ c) + f(a) + f(b) + f(c) + f(0) = 0 (4)

This is the bilinearity of Bf , i.e. Bf (a+ b, c) = Bf (a, c) +Bf (b, c), expanded as
in Definition 1.

We rewrite the subspaces D′a = {(x, g(x + a) + g(x) + g(a) + g(0))|x 6= 0 ∈
Fn

2} ∈ D′ in terms of f . As f and g are EA-equivalent with equivalence relation
(3) we can write g(x) = CA−1(x+ u) +Df(A−1(x+ u)) + v and hence

g(x+ a) + g(a) + g(x) + g(0) =
CA−1(x+ a+ u) +Df(A−1(x+ a+ u)) +
CA−1(a+ u) +Df(A−1(a+ u)) +
CA−1(x+ u) +Df(A−1(x+ u)) +
CA−1u+Df(A−1u)

= D( f(A−1(x+ u)) + f(A−1(x+ a+ u)) + f(A−1(a+ u)) + f(A−1u) )
= D( f(A−1(x+ a)) + f(A−1x) + f(A−1a) + f(0) ). (using (4))

Thus we have shown that

D′a =
(
A 0
0 D

)
DA−1a

The bilinear function Bf (u, v) = f(x + a) + f(x) + f(a) + f(0) does not
uniquely determine f but only the EA-equivalence class of f . This is due to the
fact that in characteristic 2 the quadratic form is not uniquely determined by
its bilinear form.

Lemma 5. Given a symmetric, symplectic and bilinear function B(u, v) : Fn
2 ×

Fn
2 → Fn

2 we can construct a quadratic function g such that B(u, v) = Bg(u, v).
If we start from B(u, v) = Bf (u, v), then g is EA-equivalent to f .

If quadratic functions f, g have the same bilinear function, they are EA-
equivalent.
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Proof. The argument may look more familiar if we apply it to the component
functions. Choose a basis of Fn

2 over F2. Let B(i)(u, v) : Fn
2 × Fn

2 → F2 the
restriction of B(u, v) to the i-th coordinate.

We would like to find a g(i) such that

B(i)(u, v) = g(i)(u+ v) + g(i)(u) + g(i)(v) + g(i)(0). (5)

So, essentially, we want to reconstruct the quadratic form g(i) from the sym-
plectic bilinear form B(i). But as we are in characteristic 2 the quadratic form
is not uniquely determined by its bilinear form. We represent B(i) as a matrix
C(i) with entries c(i)j,k with respect to our chosen basis, so

B(i)(u, v) = utC(i)v, with c
(i)
j,k = c

(i)
k,j and c

(i)
j,j = 0.

Then the g(i) fulfilling equation (5) are

g
(i)
d,e(x) :=

∑
j<k

c
(i)
j,kxjxk +

∑
j

d
(i)
j x2

j + e(i) .

Choose g := g0,0.
Let f = gd,e for some choice of the d

(i)
j , e(i) ∈ F2. As xj ∈ F2 we have

that x2
j = xj . So any choice of the d(i)

j , e(i) gives an APN function which is
EA-equivalent to g as(

x
gd,e(x)

)
=
(
I 0
d I

)(
x
g(x)

)
+
(

0
e

)
.

Two quadratic APN functions having the same bilinear function are EA
equivalent to the same g, hence EA equivalent to one another.

3 Proof of Theorem 1

We have defined the Df associated with the quadratic APN function f in equa-
tion (1). In Lemma 1 we have shown that Df is a d-dimensional APN-dual
hyperoval. In Lemma 4 we have shown that EA-equivalent APN-functions f, g
yield isomorphic dual hyperovals Df and Dg. This proves the direction from
the quadratic APN function to the APN-dual hyperoval of Theorem 1.

In the remainder of this section we will show the opposite direction. Firstly,
we describe the outline of the proof.

In Subsection 3.1, given an APN-dual hyperoval D, we construct a symmet-
ric, symplectic and bilinear function BD, such that applying the construction of
a dual hyperoval as in equation (1) with this bilinear function leads to a dual
hyperoval isomorphic to D.

By Lemma 5 the bilinear function BD gives rise to a quadratic function fD,
which is APN by Lemma 2. In particular we have that DfD is isomorphic to D
as claimed in the theorem.

In subsection 3.2 we will show that if we start from isomorphic APN-dual
hyperovals D and D′, this construction gives us EA-equivalent APN functions
fD and fD′ .

This proves Theorem 1.
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3.1 The construction of fD

3.1.1 Recovering the (x,MDx) representation

Let D be an APN-dual hyperoval and Y be the d-dimensional subspace of Def-
inition 3.1.

As explained in section 2.1 we think of the points in PG(2d+ 1, 2) as pairs
(x, y) ∈ Fd+1

2 × Fd+1
2 \ {(0, 0)}.

We may choose a basis (for the underlying vector space of) of PG(2d+ 1, 2)
such that Y = {(0, y)| y ∈ Fd+1

2 \ {0}}. Then for any two different points (x, y)
and (x′, y′) in D ∈ D we have x 6= x′, because D is a subspace and hence the
sum of two points is in D but no point of D is in Y by Definition 3.1.

As X := {(x, 0)|x ∈ Fd+1
2 \ {0}} and D are both d-dimensional subspaces,

the projection of D to X is X. So there exists for all D ∈ D a linear map
MD : Fd+1

2 → Fd+1
2 such that

D = {(x,MDx)|x ∈ Fd+1
2 \ {0}}.

3.1.2 Indexing the D ∈ D

Next choose one D ∈ D and name it D0. Applying an automorphism of PG(2d+
1, 2), stabilizing the subspace Y , we can achieve that D0 = {(x, 0)|x ∈ Fd+1

2 \
{0}}.

Now we index any D 6= D0 ∈ D with the a ∈ Fd+1
2 \ {0} determined by

(a, 0) = D ∩D0 i.e. we rename this D to Da.
By the dual hyperoval properties the indexing is well defined. Every D

is uniquely indexed by an element of Fd+1
2 . Moreover, every element of Fd+1

2

appears as an index, because |D| = 2d+1.
So we now have written

D = {Da|a ∈ Fd+1
2 } with Da = {(x,Max)|x ∈ Fd+1

2 \ {0}} (6)

Observe that a is the (full) kernel of Ma, i.e. Ma(a) = 0.
The dual hyperoval given in (6) is isomorphic to the dual hyperoval from

which we started, as we only applied basis transformations.

3.1.3 The symmetry Ma(b) = Mb(a)

Let a 6= b 6= 0. By definition we have (a, 0) = Da ∩ D0 and (b, 0) = Db ∩ D0.
Using (6) we can express Da ∩Db =: (u,Ma(u)) as an element of Da.

By Definition 3.2 we have u = a + b. Observing that a is the kernel of Ma

we see that Da ∩Db = (a+ b,Ma(a+ b)) = (a+ b,Ma(b)).
If we express Da ∩Db as an element of Db, we see with the same argument

that Da ∩Db = (a+ b,Mb(a)). In particular we have shown:

Ma(b) = Mb(a).

Using this identity we get linearity in the index, as:

Ma+b(x) = Mx(a+ b) = Mx(a) +Mx(b) = Ma(x) +Mb(x) (7)

This equation trivially holds if one of a and b is 0 or a = b.
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So Ma(x) =: BD(a, x) : Fd+1
2 × Fd+1

2 → Fd+1
2 is a symmetric symplectic

bilinear function.

As already mentioned in the outline of the proof, it follows from Lemma 5
that there exists a quadratic function fD with BD = BfD . Then the construc-
tion of DfD given in equation (1) shows that D = DfD . By Lemma 2 fD is
APN.

This proves the first part.

3.2 The equivalence

We have shown in (7) that Mu is additive in the index u. This implies, that the
mapping φu with

φu

(
x
y

)
:=
(

I 0
Mu I

)(
x
y

)
is a automorphism of D mapping Da to Da+u.

The group {φu|u ∈ Fd+1
2 } is a transitive subgroup of the automorphism

group of D, hence the choice of D0 in Section 3.1.2 has no effect on the bilinear
function BD.

Now consider two isomorphic APN-dual hyperovals D and D′. We may
assume that both D and D′ are already of the form of equation (6). As D has a
transitive automorphism group we can assume that the isomorphism ψ mapping
D to D′, maps D0 to D′0, i.e. ψ fixes the subspace X = D0 = D′0.

We already have shown, that both dual hyperovals can be constructed from
an APN function. By Lemma 3 the subspace Y is uniquely determined. Hence
the isomorphism ψ also has to fix the subspace Y . So the isomorphism ψ
mapping D to D′ is given by

ψ

(
x
y

)
:=
(
A 0
0 D

)(
x
y

)
By Lemma 4 we can find an APN function g, EA-equivalent to fD, such that

Dg = D′. Hence the bilinear functions Bg and BD′ are the same. By Lemma 5
we see that g and fD′ are EA-equivalent.

So we have that fD and fD′ are EA-equivalent APN functions.
This proves the second statement and concludes the proof of Theorem 1.
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