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Abstract

We give a simplified and self-contained treatment of the theory of
BCH−codes. This allows us to make use of various recursive con-
struction techniques and obtain a large number of linear codes with
new parameters.

Index Terms

BCH codes, extension, lengthening, construction X, construction XX,
cyclotomic cosets.

1 Introduction

We have studied the structure of Reed-Solomon subfield codes in an earlier
paper [5]. This enabled us to construct new codes by making use of various
recursive techniques, most prominently Construction X (see [11],p.581f and
Theorem 8). As the one-point truncations of Reed-Solomon subfield codes
are precisely the primitive BCH codes it is natural to extend our study to
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BCH codes in general. The use of general (not necessarily narrow-sense)
BCH codes makes the application of Construction XX (see [1],Theorem 9)
particularly profitable. The structure of this paper may be summarized as
follows: firstly, in Section 2 we develop the basic theory of BCH codes.
This enables us to determine the parameters of these codes and to construct
certain related codes by the method of lengthening (see Theorem 7). In
Subsection 2.3 we construct some new codes of moderate length with these
techniques. The bulk of the paper is in Section 3. We apply Construction X,
Construction XX and some related methods and obtain a large number of
new binary, ternary and quaternary codes. Among the best codes constructed
in this paper we mention the following:

• [76, 39, 14]2, [154, 14, 66]2, [170, 25, 60]2, [273, 246, 8]2,

• [33, 21, 7]3, [40, 27, 7]3, [51, 37, 7]3, [44, 29, 8]3, [90, 71, 8]3, [89, 67, 9]3,
[25, 10, 10]3, [58, 10, 30]3, [95, 10, 53]3, [92, 7, 57]3, [96, 7, 60]3,

• [82, 73, 5]4, [93, 81, 6]4, [69, 50, 9]4, [43, 12, 19]4, [53, 6, 36]4, [75, 7, 50]4,
[77, 8, 50]4, [95, 6, 66]4.

Here the subscript denotes the field over which the code is defined. Codes
[76, 39, 14]2, [92, 7, 57]3, [43, 12, 19]4 are constructed in Subsections 3.3, 3.2
and 2.3, respectively. The other codes are to be found in Tables 1, 2, 6, 8, 9,
10, 14, 16, and 17. In Section 5 a few of these codes are given concretely in
terms of either a generator matrix or a check matrix.

2 Basic theory

The following notation will be used throughout the paper.

Notation 1 Let q be a prime-power, n > 1 a natural number, tr : IFqn −→
IFq the trace. Put F = IFqn , let W be the subgroup of the multiplicative group
of F of order w ( so w is a divisor of qn − 1) and 2 ≤ t ≤ w.

We will define a family of linear orthogonal arrays, whose duals will turn
out to be the BCH codes.
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Definition 1 Let P(l, t) be the space of polynomials in one variable with
coefficients in F, whose monomials have degrees between l and l+ t−2 ( here
t ≥ 2). We define an array B(l, t, w) with w columns indexed by u ∈ W and
qn(t−1) rows indexed by the polynomials p(X) ∈ P(l, t). The entry in column
u and row p(X) is

tr(p(u)).

Definition 2 An orthogonal array OAλ(t, k, v) is a (vtλ, k)-array of sym-
bols from a set of cardinality v having the property that in the projection onto
any set of t columns each t-tuple of entries occurs precisely λ times. t is the
strength of the array.

Lemma 1 The array B(l, t, w) of Definition 1 is an orthogonal array of
strength t− 1 over IFq.

Proof: Given t− 1 pairwise different elements uj ∈ F and t− 1 arbitrary
elements αj ∈ IFq, j = 1, 2, . . . , t−1, we have to show that the number of rows
of our array with entries αj in columns uj for all j is independent of the choice
of the uj and αj. Pick βj ∈ F such that tr(βj) = αj, j = 1, 2, . . . , t−1. It suf-
fices to show that there is precisely one polynomial p(X) ∈ P(l, t) satisfying
p(uj) = βj for all j. This is an elementary fact in polynomial interpolation.

Our arrays B(l, t, w) are in fact linear over IFq in the sense that its rows
form a vector space over IFq. It is obvious that the dual of a linear orthogonal
array of strength t − 1 ( dual with respect to the usual dot product) is a
linear code of minimum distance ≥ t. Moreover we can identify the dual
codes B(l, t, w)⊥ with the BCH codes (for an Introduction into these Bose-
Chaudhuri-Hocquenghem codes see [11], Chapter 9). Case l = 1 leads to
the BCH codes in the narrow sense, case w = qn − 1 to the primitive
BCH codes. As a preparation we introduce cyclotomic cosets. The set
I = {l, l +1, . . . , l + t−2} = [l, l + t−2] will be called the defining interval
of the code B(l, t, w)⊥.

Definition 3 Let G = G(F |IFq) be the Galois group, generated by the Frobe-
nius automorphism φ. Consider the permutation representation of G on
ZZ/wZZ defined by

φ : i −→ j if and only if iq ≡ j(mod w).
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The orbits of this action are the cyclotomic cosets. The orbit containing i
is Zw(i). In the case of the codes B(l, t, w) we use [l, l + w − 1] as the set of
representatives for the action and use the ordering l < l+1 < . . . < l+w−1.
Denote the smallest member of the cyclotomic coset containing i ( with respect
to this ordering, for given l) by i.

Theorem 1 B(l, t, w)⊥ is a general BCH-code of designed distance t.

Proof: Let p(X) =
∑l+t−2

j=l ajX
j ∈ P(l, t). Choose a primitive w-th

root of unity β ∈ F. Let coordinate i of the code correspond to the field
element βi, i = 1, 2, . . . , w. The entry ci of B(l, t, w) indexed by p(X) is
ci = tr(p(βi)). As is common usage in the theory of cyclic codes we consider
a polynomial which has the ci as coefficients: p̃(X) =

∑w
i=1 ciX

w−i. Then
p̃(βk) =

∑w
i=1

∑n−1
r=0

∑l+t−2
j=l aqr

j βi(jqr−k) =
∑n−1

r=0

∑l+t−2
j=l aqr

j

∑w
i=1 βi(jqr−k). The

last sum vanishes if jqr 6= k. It follows that p̃(βk) = 0 if the cyclotomic coset
containing k is disjoint from the defining interval I.
Assume now Zw(k) does contain an element j ∈ I. Consider p(X) = axj, a ∈
F. Then p̃(βk) = w · ∑

r:jqr=k aqr
. As w|(qn − 1) we have w 6= 0. A suitable

choice of a ∈ F leads to p̃(βk) 6= 0 as otherwise the polynomial
∑n−1

r=0 Xqr
, of

degree qn−1, would have qn roots, which is impossible. We have shown that
βk is a common root of all the polynomials p̃(X), where p(X) ∈ P(l, t), if
and only if Zw(k) ∩ I = ∅. This is the standard description in the theory of
cyclic codes for the dual of the BCH code with designed distance t.

It may be noted that is not quite appropriate to call t in Theorem 1 the
designed distance of B(l, t, w)⊥. If for instance B(l, t, w)⊥ = B(l, t+1, w)⊥ or
B(l, t, w)⊥ = B(l− 1, t + 1, w)⊥, then we know that the minimum distance is
> t. We shall nonetheless hold on to the terminology of Theorem 1.

Notation 2 Denote by P0(l, t, w) the set of those polynomials p(X) ∈ P(l, t)
satisfying tr(p(W )) = 0. It is clear that P0(l, t, w) is a vector-space over IFq.
Denote its dimension by ρ0(l, t, w).

Definition 1 shows that each row of the array B(l, t, w) occurs with fre-
quency qρ0(l,t,w). We conclude that the row space of B(l, t, w) has dimension
n(t−1)−ρ0(l, t, w). This shows that the dual code’s dimension is determined
by ρ0(l, t, w) :

Theorem 2 The q-ary BCH code B(l, t, w)⊥ of length w and designed dis-
tance t has dimension w − n(t− 1) + ρ0(l, t, w).
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2.1 The function ρ0(l, t, w)

Definition 4 Denote by Cl,i the qn-ary code of dimension i and length w
with generator matrix whose columns are indexed by u ∈ W and whose rows
are indexed by k ∈ [l, l + i − 1], with entry uk in row k, column u. Here
1 ≤ i ≤ w.

Lemma 2 C⊥
l,i = Cw−l+1,w−i if l ≤ w.

Proof: As dim(Cl,i) = i and dim(Cw−l+1,w−i) = w− i, the dimensions are
right (these dimensions are over F ). It remains to show that the rows of the
generator matrices are orthogonal to each other. This follows from the fact
that

∑
u∈W uk = 0 if k is not a multiple of w.

Definition 5 Let ρ1(l, t, w) denote the dimension of the IFq-vector space of
polynomials p(X) ∈ P(l, t) satisfying

p(W ) ⊆ IFq.

We can now express the dimension of B(l, t, w)⊥ with the help of the
function ρ1 now. A basic theorem of Delsarte’s ([8], Theorem 2) states that
the trace-code of a code C is the subfield code of the dual C⊥. It follows
that B(l, t, w)⊥, being the subfield code of Cw−l+1,w−t+1 by Lemma 2, has
dimension ρ1(w − l + 1, w + 2− t, w). Comparison with Theorem 2 yields a
relation of duality between the functions ρ0 and ρ1 :

Theorem 3

w + ρ0(l, t, w) = (t− 1)n + ρ1(w − l + 1, w + 2− t, w)

We will now use cyclotomic cosets to describe the growth of ρ1(l, t, w)
as a function of t. Let p(X) =

∑l+t−2
j=l ajX

j ∈ P(l, t) be a polynomial sat-
isfying p(W ) ⊆ IFq. We are only interested in the cases where t < w. The
condition p(W ) ⊆ IFq is obviously equivalent with Xw − 1 | p(X)q − p(X).
Consider p(X)q =

∑
j aq

jX
jq. This polynomial affords the same mapping as∑

j aq
jX

bjqc, where bic is the remainder of i modulo w, chosen in the defining
set I. So this last polynomial is congruent to p(X) modulo Xw − 1. As the
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degrees of these polynomials are less than w, they must coincide. We con-
clude: aq

j = abjqc. Observe that the mapping j −→ bjqc is the action of the
Frobenius automorphism introduced in Definition 3. We conclude that the
coefficient aj uniquely determines the coefficients of Xk for each member k
of the cyclotomic coset Zw(j). The following is an easy consequence:

Theorem 4 Let t < w. Call t maximal if it is the maximal element of
its cyclotomic coset Zw(t), with respect to the ordering of [l, l + w − 1] as
introduced in Definition 3. Put s =| Zw(t) | . Then

ρ1(l, t + 1, w)− ρ1(l, t, w) =
{

0 if l + t− 1 is not maximal
s if l + t− 1 is maximal.

Using the duality Theorem 3 we get the desired expression for the growth
of function ρ0, as follows.

Theorem 5

ρ0(l, t + 1, w)− ρ0(l, t, w) =
{

n if l + t− 1 is not minimal
n− s if l + t− 1 is minimal

Here s is the length of the cyclotomic coset Zw(t), and we are still using the
ordering l < l + 1 < . . . < l + w − 1.

These results facilitate the determination of the dimension of BCH codes.

2.2 Lengthening BCH-codes

Definition 6 Let U be the IFq-vector space of highest coefficients al+t−2 of the
polynomials in P0(l, t, w) and Φ = {φi|i = 1, 2, . . . , n − dim(U)} a complete
set of linearly independent linear functionals φi : F −→ IFq having U in their
kernels. Define an extension (B(l, t, w), Φ) of the orthogonal array B(l, t, w)
(see Definition 1) by n − dim(U) additional columns indexed by the φi ∈
Φ. The entry in row p(X) of the column indexed by φi is φi(al+t−2), where
p(X) =

∑l+t−2
j=l ajX

j.

Theorem 6 Let δ(l, t, w) = ρ0(l, t, w) − ρ0(l, t − 1, w). Choose U and Φ as
in Definition 6. Then dim(U) = δ(l, t, w).
The code (B(l, t, w), Φ)⊥ has parameters

[w + n− δ(l, t, w), w − n(t− 2) + ρ0(l, t− 1, w), t]

It may be described as an (n− δ(l, t, w))-fold lengthening of B(l, t, w)⊥.
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Proof: This proof is largely analogous to that of Theorem 3 in [5], so we
can be short here. As there is a natural isomorphism between U and the
factor space P0(l, t, w)/P0(l, t− 1, w) we have dim(U) = δ(l, t, w). It follows
from polynomial interpolation that (B(l, t, w), Φ) still has strength t−1. The
dual code B(l, t, w)⊥, of length w +n− δ(l, t, w), therefore has minimum dis-
tance ≥ t. As each φi ∈ Φ has U in its kernel the row space of (B(l, t, w), Φ)
has the same dimension as that of B(l, t, w). It follows that the dimension of
the dual code increases by n− δ(l, t, w).

Corollary 1 Assume ρ0(l, t, w) = ρ0(l, t− 1, w).
If t ≤ n + 1 and there is a q-ary linear code [e, e− n, t], then B(l, t, w)⊥ may
be lengthened e times to yield a code with parameters

[w + e, w − n(t− 1) + ρ0(l, t, w) + e, t].

This is a slight generalization of Theorem 6 for small values of t. Observe
that the linear functionals defining the extension of B(l, t, w) do not need
to be independent. It suffices that any t − 1 of them are independent. The
existence of e linear functionals any t−1 of which are independent is equiva-
lent with that of a linear q-ary code with parameters [e, e−n, t]. This proves
Corollary 1.
We can generalize Theorem 6 in a different direction: Symmetrize the ap-
proach and consider linear functionals operating on the lowest coefficient al

of p(X), too. In this way we can extend our orthogonal array B(l, t, w) by 2n
columns. In order to get a corresponding lengthening of the code B(l, t, w)⊥

we have to take care to use only linear functionals which vanish on the sub-
spaces covered by the highest and lowest coefficients of P0(l, t, w). This leads
to the following theorem:

Theorem 7 Let δ(l, t, w) = ρ0(l, t, w)−ρ0(l, t−1, w), δ′(l, t, w) = ρ0(l, t, w)−
ρ0(l + 1, t − 1, w). The code B(l, t, w)⊥ can be lengthened 2n − δ(l, t, w) −
δ′(l, t, w) times.

A particular case is l = 0. By definition δ′(0, t, w) is the dimension of
the space of u ∈ F satisfying tr(u) = 0, and hence n − δ′(0, t, w) = 1. It
follows from Theorem 7 that B(0, t, w)⊥ can always be lengthened once. Let
us denote the corresponding extended array by A(0, t, w). We have seen that
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the lengthened BCH-code A(0, t, w)⊥ has parameters [w + 1, w + 1− n(t−
1) + ρ0(0, t, w), t]. In case w = qn− 1 the code A(0, t, w)⊥ is a Reed-Solomon
subfield code. These are the codes we studied in [5].
In Section 3 we shall introduce and apply Constructions X and XX. It is easy
to see that Theorem 6 and Corollary 1 are special cases of Construction X
and Theorem 7 is a special case of Construction XX (see Theorems 8 and
9).

2.3 New codes via lengthening

We now give some applications of Theorem 7. In Table 1 we give the values
of q, n, w, l and the parameters of the code obtained. The value of t coin-
cides with the distance of the code, and the difference between the length
and w equals 2n− (δ(l, t, w)+ δ′(l, t, w)). The most interesting of these codes
is the quaternary [53, 6, 36]4. It is optimal. Concatenation with the binary
code [3, 2, 2]2 yields a code with the new binary parameters [159, 12, 72]2.
Let us explain the mechanism in more detail for this example: we have
q = 4, n = 4, w = 51, t = 36. Repeated use of Theorem 5 shows that
ρ0(0, 35, 51) = 90, ρ0(0, 36, 51) = 93. By Theorem 2 the code B(0, 36, 51)⊥

has parameters [51, 4, 36]. We apply Theorem 7. As explained after the state-
ment of that theorem we have n−δ′(0, t, w) = 1. The values above show that
n − δ(0, t, w) = 1. Theorem 7 guarantees that our BCH-code [51, 4, 36] can
be lengthened twice.
Next we list, in Table 2, a few lengthenings generated by computer. In each
case we list q, n, w, the parameters of the BCH code B(0, t, w)⊥, and the pa-
rameters of the code obtained via computer by repeated lengthening. Here
is an example: in case q = 3, n = 4, w = 20 repeated use of Theorem 5
shows ρ0(0, 10, 20) = 21. Theorem 2 shows that B(0, 10, 20)⊥ has parame-
ters [20, 5, 10]. A computer search produced a 5-step lengthening, hence a
code [25, 10, 10]3. This explains the third entry in Table 2. Full information
on these codes is available in the first author’s homepage [4]. Consider the
check matrix of [93, 81, 6]4 as given there. The first 43 columns of this matrix
generate a code with the new parameters [43, 12, 19]4.
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3 Extending BCH codes

3.1 Using Construction X

We use a basic result on lengthening codes known as Construction X ([11],
p.581/582) in the following form

Theorem 8 (construction X) Let C be a q-ary code with parameters [n, k, d]
and D a subcode of C of codimension κ and minimum distance ≥ d + δ for
some δ > 0. If there is a code with parameters [e, κ, δ] then there is a code C̃
with parameters [n + e, k, d + δ], which projects onto C.

Let I1, I2 be the defining intervals of BCH codes C and D, respectively.
If I1 ⊂ I2, then C ⊃ D. Theorem 8 can then be applied to this chain of
codes. The auxiliary codes [e, κ, δ] are usually taken from the data base
[6]. Sometimes we use one of our own new codes as an auxiliary code. In
Tables 3,4,5, 6 we give the parameters of the pairs C ⊃ D of BCH codes,
the boundaries (l, l + t − 2) of the defining interval for C and for D, the
parameters of the auxiliary code, and finally the parameters of the code
obtained from Theorem 8. We also take the liberty to eventually apply
Construction X not to the pair C ⊃ D, but to a pair C ′ ⊃ D, where C ′ is
a code between D and C. The dimension of the auxiliary code shows when
this happens. Here is an instance where we can use one of the computer-
generated lengthenings of Table 2: we saw in [5] that there is a pair of
ternary Reed-Solomon subfield codes [81, 15, 42] ⊃ [81, 5, 54]. Application of
Theorem 8 with the computer-generated [25, 10, 10] from Table 2 as auxiliary
code yields a new code [106, 15, 52]3.
The values of w used correspond to the factorizations 33 − 1 = 26, 34 − 1 =
80, 38 − 1 = 80 · 82, 35 − 1 = 2 · 121 and 46 − 1 = 63 · 65, 44 − 1 = 3 · 85. A
quaternary code [65, 27, 23] had been constructed in [5] by different means.
Here we see that there is in fact a BCH code with these parameters and
we use it in Table 6 to construct longer codes with new parameters. In the
same vein, a quaternary [65, 8, 44] has been constructed by Groneick and
Grosse in [9]. These authors used the code for the construction of several
new binary codes. In [5] we constructed a code with these parameters as
an extension of a primitive BCH code. It turns out that there is a BCH
code with these parameters. We use it for the construction of a [77, 8, 50] in
Table 6. Likewise, it had not been observed that there is a BCH code with
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parameters [85, 6, 60]. In the data base [6] a manuscript of de Boer is given
as source for these parameters.

3.2 Iterating construction X

When we have a chain of codes C1 ⊃ C2 ⊃ C3 we apply Construction X
to the pair C1 ⊃ C2 first, producing a chain of codes C̃i. Then we apply
Construction X to the pair C̃1 ⊃ C̃3. Let us illustrate with a ternary example
in case w = 80, l = 31. We obtain a chain of codes [80, 7, 50] ⊃ [80, 6, 51] ⊃
[80, 2, 60]. Using the trivial auxiliary code [1, 1, 1] produces a [81, 7, 51] ⊃
[81, 2, 60]. Finally we use the auxiliary code [11, 5, 6] (a subcode of the ternary
Golay code) and obtain a code [92, 7, 57]3. Apart from this example, our
applications of this method that yield new code parameters are all in the
case q = 2, w = 127, l = 1 (see Table 7) and correspond to primitive BCH
codes. It suffices therefore to give the parameters of our codes and of the
auxiliary codes. As before we give the chain of BCH codes, but eventually
we apply the procedure to subcodes. Observe how the binary Golay code
furnishes auxiliary codes in these constructions.
The following is a slight generalization of Alltop’s Construction XX (see [1]).

3.3 Applying construction XX

Theorem 9 (Construction XX) Let C, C1, C2, C0 be q-ary codes of length n
such that C ⊃ C1, C2, C0 = C1 ∩ C2. Put dim(C) = k, dim(C/Cj) = κj, j = 1, 2.
Let the minimum distances of the codes be dist(C) = d, dist(Ci) = di, i =
0, 1, 2. If there exist codes [e1, κ1, x1] and [e1, κ2, x2], then a code with param-
eters [n + e1 + e2, k, min{d0, d1 + x2, d2 + x1, d + x1 + x2}] can be constructed
by lengthening C.

Proof: Apply Construction X (Theorem 8) to the pair C ⊃ C1. This yields
a code C̃ with parameters [n + e1, k, min(d1, d + x1)], containing the subcode
C̃2. As C0 = C1∩C2 we see that each vector in C2−C0 will have weight ≥ d2+x1

in C̃. It follows that the minimum weight of C̃2 is ≥ min{d0, d2 + x1}. An
application of Construction X to the pair C̃ ⊃ C̃2 yields the final result.

Let us apply this theorem in the situation of BCH codes. More precisely
put C0 = B(l, t, w)⊥, C1 = B(l + i, t − i, w)⊥, C2 = B(l, t − j, w)⊥, C = B(l +

10



i, t− i− j, w)⊥. It is clear that the conditions of Theorem 9 are satisfied, in
particular C1 ∩ C2 = C0. In the following tables we list applications of this
construction method. As before our BCH codes B(l, t, w)⊥ may be easiest
described by their defining intervals I = [l, l +1, . . . , l + t− 2]. We know that
the minimum distance of the code is lower-bounded by 1 plus the cardinality
of the defining interval. It is therefore unnecessary to include the distance in
the tables. If I0 = [a, a + 1, . . . , b] is the interval of C0, then the intervals of
C1 and C2 will be I1 = [a + i, . . . , b] and I2 = [a, . . . , b− j], respectively. The
fact that C0 = C1 ∩ C2 follows from I0 = I1 ∪ I2. The interval I of C will be
contained in [a + i, . . . , b − j]. Naturally we only consider situations where
a + i < b− j.
In Tables 8-13 we give the pair (a, b) (and thus the code C0), the best estimate
for the minimum distance of C0 (recall that if the same code C0 is defined
by an interval which is is larger than I0, then by our theory the minimum
distance of C0 will be larger than b − a + 1), the values i, j defining C1, C2,
the pair (x, y) giving the defining interval I of C, the dimensions of the
four codes involved, the parameters of the auxiliary codes and finally the
parameters of the resulting code. Let us illustrate with an example in case
q = 2, w = 63. We have I0 = {53, . . . , 65}, hence a = 53, b = 65. This code
has parameters [63, 29, 14]. We use i = 3, j = 2, leading to codes C1, C2 of
parameters [63, 36, 11] and [63, 32, 12], respectively (note that the distances
of C1 and C2 are, respectively, i and j less than that of C0). The interval
defining C is I = [55, . . . , 62], hence x = 55, y = 62. This code has parameters
[63, 39, 9]. Application of Construction XX with auxiliary codes [4, 3, 2] and
[8, 7, 2] yields a code [75, 39, 13]2.

3.4 Iterating Construction XX

Let C1 ⊃ C2 ⊃ C3 be a chain of q-ary codes of length n, and let U ⊂ C1

be another subcode of C1, of codimension κ. Apply Construction X to the
pair C1 ⊃ U , with an auxiliary code [e, κ, δ]. We obtain a chain of length-
ened codes C̃1 ⊃ C̃2 ⊃ C̃3, (lengths n + e). The minimum distances of
these codes are bounded as follows: d(C̃1) ≥ min{d(C1) + δ, d(U)}, d(C̃1) ≥
min{d(C2) + δ, d(U ∩C2)}, d(C̃3) ≥ min{d(C3) + δ, d(U ∩C3)}. We then apply
the iteration of Construction X to this chain.
Choose Ci = B(l, ti, w)⊥, where t1 < t2 < t3. As before we will give in Ta-
bles 14-17 the values of l, of the largest member ri = l+ ti−2 of the defining
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interval of Ci and the dimension ki of Ci. Choose U to be the BCH code with
defining interval [l′, l+t1−2] for some l′ < l. It will suffice to give l′ in the ta-
bles. The members of the second chain of codes are then the BCH codes with
defining intervals [l′, l+ ti−2]. We also give the dimension k of U. Finally we
need to know which auxiliary codes are being used. As before we apply this
mechanism not only to the BCH codes themselves but also to intermediate
codes. The dimensions of the auxiliary codes show when this happens. We
illustrate the procedure with an example from Table 15. The first chain of
BCH codes, with defining intervals [1, 14], [1, 16] and [1, 18], respectively, has
parameters [255, 199, 15] ⊃ [255, 191, 17] ⊃ [255, 187, 19]. The second chain
corresponds to defining intervals [0, 14], [0, 16] and [0, 18]. Their minimum
distances are clearly one larger than those of the members of the first chain.
First apply Construction X (i.e. Theorem 8) with the auxiliary code [1, 1, 1].
This indicates that the larger of the two codes to which we apply the con-
struction is not C1, but a subcode [252, 192, 15]. After lengthening we have a
chain of codes with parameters [256, 199, 16] ⊃ [256, 191, 18] ⊃ [255, 187, 20].
We are now in a position to apply the iterated X-construction. The result is
a code [264, 192, 20]2.

3.5 When the distance is larger

In some cases the minimal distance is larger than designed. It was shown
in [10] that the binary primitive BCH code of length 127, dimension 43 and
designed distance 29 has true minimal distance 31, and hence has parameters
[127, 43, 31]. Moreover it was shown in [2] that in 2 cases binary primitive
BCH codes of length 255 have true minimum distance two larger than de-
signed. This accounts for binary codes [255, 63, 63] (designed distance 61)
and [255, 71, 61] (designed distance 59). Using these values in Construction
X leads to some new codes. Tables 18 and 19 are organized as in Sub-
section 3.1 dedicated to the application of Construction X. The iterated
construction X yields two more new codes in case q = 2, w = 127, l = 1, see
Table 20.
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4 Tables

Table 1: Standard lengthenings

q n w l parameters q n w l parameters
3 4 80 31 [84,35,22] 3 5 121 53 [126,91,12]
3 4 80 34 [88,63,10] 3 5 121 52 [131,91,13]
3 4 80 31 [86,55,13] 3 6 56 0 [58,10,30]
3 4 80 28 [88,49,16] 4 3 63 62 [69,50,9]
3 4 80 25 [88,41,19] 4 3 63 62 [69,44,12]
3 4 80 19 [88,31,25] 4 3 63 62 [69,41,13]
3 4 80 31 [82,35,21] 4 3 63 62 [69,25,25]
3 5 121 59 [126,101,9] 4 3 63 62 [69,19,29]
3 5 121 59 [126,91,12] 4 4 85 50 [89,63,11]
3 5 121 0 [127,76,18] 4 4 51 0 [53,6,36]
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Table 2: Computer-generated lengthenings

q n w B(0, t, w)⊥ result

3 3 26 [26,14,7] [33,21,7]
3 4 16 [16,3,7] [40,27,7]
3 4 20 [20,5,10] [25,10,10]
3 4 40 [40,26,7] [51,37,7]
3 4 40 [40,25,8] [44,29,8]
3 4 80 [80,64,7] [88,72,7]
4 3 63 [63,54,5] [82,73,5]
4 3 63 [63,51,6] [93,81,6]

Table 3: Construction X: case q = 2, w = 127

pair of codes C D aux. code result

[127, 36, 31] ⊃ [127, 29, 43] (1, 30) (1, 42) [16, 5, 8] [143, 34, 39]
[21, 5, 10] [148, 34, 41]
[24, 5, 12] [151, 34, 43]

[127, 29, 43] ⊃ [127, 22, 47] (1, 42) (1, 46) [8, 4, 4] [135, 26, 47]
[127, 22, 47] ⊃ [127, 15, 55] (1, 46) (1, 54) [12, 4, 6] [139, 19, 53]
[127, 29, 43] ⊃ [127, 15, 55] (1, 42) (1, 54) [34, 12, 12] [161, 27, 55]

[32, 13, 10] [159, 28, 53]
[37, 14, 12] [164, 29, 55]
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Table 4: Construction X: case q = 2, w = 255

pair of codes C D aux. code result

[255, 231, 7] ⊃ [255, 223, 9] (1, 6) (1, 8) [9, 8, 2] [264, 231, 9]
[255, 215, 11] ⊃ [255, 207, 13] (1, 10) (1, 12) [9, 8, 2] [264, 215, 13]
[255, 199, 15] ⊃ [255, 191, 17] (1, 14) (1, 16) [9, 8, 2] [264, 199, 17]
[255, 45, 87] ⊃ [255, 37, 91] (1, 86) (1, 90) [9, 8, 2] [264, 45, 89]
[255, 10, 122] ⊃ [255, 8, 128] (171, 36) (165, 36) [3, 2, 2] [258, 10, 124]

[6, 2, 4] [261, 10, 126]
[255, 38, 90] ⊃ [255, 36, 92] (171, 4) (169, 4) [3, 2, 2] [258, 38, 92]
[255, 30, 94] ⊃ [255, 28, 96] (171, 8) (169, 8) [3, 2, 2] [258, 30, 96]

[255, 22, 102] ⊃ [255, 20, 104] (171, 16) (169, 16) [3, 2, 2] [258, 22, 104]
[255, 134, 34] ⊃ [255, 130, 36] (239, 16) (237, 16) [5, 4, 2] [260, 134, 36]
[255, 142, 30] ⊃ [255, 134, 34] (239, 12) (239, 16) [4, 1, 4] [259, 135, 34]
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Table 5: Construction X: case q = 3

pair of codes C D aux. code result

[80, 39, 17] ⊃ [80, 35, 20] (31, 46) (31, 49) [5, 4, 2] [85, 39, 19]
[82, 65, 8] ⊃ [82, 57, 10] (38, 44) (37, 45) [9, 8, 2] [91, 65, 10]

[121, 71, 18] ⊃ [121, 66, 21] (44, 60) (41, 60) [4, 2, 3] [125, 68, 21]
[6, 5, 2] [127, 71, 20]
[8, 5, 3] [129, 71, 21]

[121, 76, 16] ⊃ [121, 66, 21] (46, 60) (41, 60) [11, 6, 5] [132, 72, 21]
[121, 66, 21] ⊃ [121, 61, 23] (41, 60) (41, 62) [6, 5, 2] [127, 66, 23]
[121, 36, 36] ⊃ [121, 31, 41] (41, 75) (41, 80) [10, 5, 5] [131, 36, 41]
[121, 11, 67] ⊃ [121, 10, 69] (55, 120) (55, 1) [2, 1, 2] [123, 11, 69]
[121, 15, 63] ⊃ [121, 10, 69] (61, 1) (55, 1) [6, 5, 2] [127, 15, 65]

[11, 5, 6] [132, 15, 69]
[121, 16, 61] ⊃ [121, 15, 63] (61, 120) (61, 1) [2, 1, 2] [123, 16, 63]
[121, 75, 17] ⊃ [121, 65, 21] (106, 0) (106, 4) [15, 10, 4] [136, 75, 21]
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Table 6: Construction X: case q = 4

pair of codes C D aux. code result

[65, 27, 23] ⊃ [65, 15, 31] (22, 43) (18, 47) [19, 12, 6] [84, 27, 29]
[65, 27, 23] ⊃ [65, 21, 25] (22, 43) (21, 44) [7, 6, 2] [72, 27, 25]
[65, 8, 44] ⊃ [65, 2, 52] (44, 21) (40, 25) [12, 6, 6] [77, 8, 50]

[65, 46, 10] ⊃ [65, 40, 12] (61, 4) (60, 5) [7, 6, 2] [72, 46, 12]
[85, 67, 8] ⊃ [85, 63, 10] (29, 35) (27, 35) [5, 4, 2] [90, 67, 10]
[85, 6, 60] ⊃ [85, 2, 68] (56, 29) (52, 33) [10, 4, 6] [95, 6, 66]

[85, 27, 29] ⊃ [85, 26, 31] (57, 84) (57, 1) [2, 1, 2] [87, 27, 31]
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Table 7: Construction X iterated: q = 2, w = 127

chain of codes auxiliary codes result

[127, 29, 43] ⊃ [127, 22, 47] ⊃ [127, 15, 55] [4, 1, 4], [17, 8, 6] [148, 23, 53]
[4, 1, 4], [20, 8, 8] [151, 23, 55]
[6, 2, 4], [21, 9, 8] [154, 24, 55]
[7, 3, 4], [22, 10, 8] [156, 25, 55]
[8, 4, 4], [23, 11, 8] [158, 26, 55]

[127, 22, 47] ⊃ [127, 15, 55] ⊃ [127, 8, 63] [8, 1, 8], [17, 8, 6] [152, 16, 61]
[8, 1, 8], [20, 8, 8] [155, 16, 63]

[14, 3, 8], [22, 10, 8] [163, 18, 63]
[11, 3, 6], [22, 10, 8] [160, 18, 61]
[12, 4, 6], [23, 11, 8] [162, 19, 61]
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Table 8: Construction XX: q = 2, w = 127

(a, b) d(C0) i, j (x, y) k, k1, k2, k0 aux. codes result
(65, 8) 127 8, 8 (73, 0) 14, 7, 7, 0 [8, 7, 2], [19, 7, 8] [154, 14, 66]

[11, 7, 3], [19, 7, 8] [158, 14, 68]
[15, 7, 5], [19, 7, 8] [162, 14, 70]
[18, 7, 7], [19, 7, 8] [165, 14, 72]

(65, 8) 127 9, 8 (73, 126) 15, 8, 7, 0 [12, 7, 4], [20, 8, 8] [160, 15, 68]
[16, 7, 6], [20, 8, 8] [164, 15, 70]
[19, 7, 8], [20, 8, 8] [167, 15, 72]
[19, 7, 8], [9, 8, 2] [156, 15, 66]

(73, 4) 64 4, 8 (81, 0) 21, 14, 14, 7 [18, 7, 7], [12, 7, 4] [158, 21, 60]
[19, 7, 8], [8, 7, 2] [154, 21, 58]

7, 8 [23, 7, 9], [15, 7, 5] [166, 21, 62]
(73, 4) 64 4, 12 (85, 0) 28, 14, 21, 7 [37, 14, 12], [8, 7, 2] [172, 28, 58]
(73, 4) 64 5, 8 (81, 126) 22, 15, 14, 7 [19, 7, 8], [9, 8, 2] [156, 22, 58]

[19, 7, 8], [13, 8, 4] [160, 22, 60]
[23, 7, 9], [17, 8, 6] [168, 22, 62]

(73, 4) 64 5, 12 (85, 126) 29, 15, 21, 7 [37, 14, 12], [9, 8, 2] [174, 29, 58]
[37, 14, 12], [13, 8, 4] [178, 29, 60]

(73, 4) 64 4, 8 (81, 0) 21, 14, 14, 7 [16, 5, 8], [7, 7, 1] [151, 19, 58]
[16, 5, 8], [11, 7, 3] [155, 19, 60]

(81, 4) 52 4, 4 (85, 0) 28, 21, 21, 14 [8, 7, 2], [12, 7, 4] [147, 28, 50]
[12, 7, 4], [12, 7, 4] [151, 28, 52]

(81, 4) 52 5, 4 (85, 126) 29, 22, 21, 14 [12, 7, 4], [9, 8, 2] [149, 29, 50]
[12, 7, 4], [13, 8, 4] [153, 29, 52]

(81, 4) 52 4, 4 (85, 0) 28, 21, 21, 14 [8, 7, 2], [7, 4, 3] [143, 25, 50]
[12, 7, 4], [7, 4, 3] [147, 25, 52]

(85, 2) 48 2, 12 (97, 0) 35, 28, 28, 21 [27, 7, 12], [8, 7, 2] [162, 35, 46]
[24, 5, 12], [7, 7, 1] [159, 33, 46]

(125, 18) 22 2, 1 (1, 14) 78, 70, 71, 63 [9, 8, 2], [12, 7, 4] [149, 78, 22]
(125, 20) 24 2, 3 (1, 18) 71, 63, 64, 56 [9, 8, 2], [8, 7, 2] [145, 71, 24]
(125, 26) 30 4, 3 (1, 22) 57, 49, 50, 42 [9, 8, 2], [12, 7, 4] [149, 57, 30]
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Table 9: Construction XX: q = 2, w = 255

(a, b) d(C0) i, j (x, y) k, k1, k2, k0 aux. codes result

(203, 2) 56 2, 2 (205, 0) 90, 86, 82, 78 [5, 4, 2], [9, 8, 2] [269, 90, 56]
(211, 2) 48 2, 2 (213, 0) 114, 106, 106, 98 [9, 8, 2], [9, 8, 2] [273, 114, 48]
(213, 2) 46 2, 2 (217, 0) 122, 114, 114, 106 [8, 4, 4], [9, 8, 2] [272, 118, 46]
(213, 2) 46 2, 4 (217, 0) 122, 114, 114, 106 [13, 8, 4], [9, 8, 2] [277, 122, 46]
(227, 2) 32 2, 2 (229, 0) 154, 146, 146, 138 [9, 8, 2], [9, 8, 2] [273, 154, 32]
(229, 2) 30 2, 2 (231, 0) 162, 154, 154, 146 [9, 8, 2], [9, 8, 2] [273, 162, 30]
(229, 2) 30 2, 4 (233, 0) 170, 154, 162, 146 [16, 11, 4], [9, 8, 2] [280, 165, 30]
(231, 2) 28 2, 2 (233, 0) 170, 162, 162, 154 [9, 8, 2], [9, 8, 2] [273, 170, 28]
(231, 2) 28 2, 2 (235, 0) 178, 162, 170, 154 [16, 11, 4], [9, 8, 2] [280, 173, 28]
(233, 2) 26 2, 2 (235, 0) 178, 170, 170, 162 [9, 8, 2], [9, 8, 2] [273, 178, 26]
(233, 2) 26 2, 4 (237, 0) 186, 170, 178, 162 [16, 11, 4], [9, 8, 2] [280, 181, 26]
(235, 2) 24 2, 2 (237, 0) 186, 178, 178, 170 [9, 8, 2], [9, 8, 2] [273, 186, 24]
(235, 2) 24 2, 4 (239, 0) 190, 178, 182, 170 [16, 11, 4], [9, 8, 2] [280, 189, 24]
(237, 2) 22 2, 2 (239, 0) 190, 186, 182, 178 [5, 4, 2], [9, 8, 2] [269, 190, 22]
(237, 2) 22 2, 4 (241, 0) 198, 186, 190, 178 [16, 11, 4], [9, 8, 2] [280, 197, 22]
(243, 2) 16 2, 2 (245, 0) 214, 206, 206, 198 [9, 8, 2], [9, 8, 2] [273, 214, 16]
(243, 2) 16 2, 4 (247, 0) 222, 206, 214, 198 [16, 11, 4], [9, 8, 2] [280, 217, 16]
(243, 2) 16 2, 4 (247, 0) 222, 206, 214, 198 [22, 16, 4], [9, 8, 2] [286, 222, 16]
(247, 2) 12 2, 2 (249, 0) 230, 222, 222, 214 [9, 8, 2], [9, 8, 2] [273, 230, 12]
(247, 2) 12 2, 4 (251, 0) 238, 222, 230, 214 [16, 11, 4], [9, 8, 2] [280, 233, 12]

[22, 16, 4], [9, 8, 2] [286, 238, 12]
(251, 2) 8 2, 2 (253, 0) 246, 238, 238, 230 [9, 8, 2], [9, 8, 2] [273, 246, 8]
(251, 8) 8 2, 4 (0, 0) 254, 238, 246, 230 [16, 11, 4], [9, 8, 2] [280, 249, 8]
(251, 2) 8 2, 4 (0, 0) 254, 238, 246, 230 [22, 16, 4], [9, 8, 2] [286, 254, 8]
(251, 2) 8 3, 2 (253, 254) 247, 239, 238, 230 [9, 8, 2], [13, 9, 3] [277, 247, 8]
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Table 10: Construction XX: q = 3, w = 80

(a, b) d(C0) i, j (x, y) k, k1, k2, k0 aux. codes result
(19, 41) 24 1, 2 (21, 40) 33, 31, 29, 27 [3, 2, 2], [4, 4, 1] [87, 33, 24]
(19, 41) 24 2, 2 (21, 39) 34, 32, 29, 27 [3, 2, 2], [6, 5, 2] [89, 34, 24]
(25, 41) 18 1, 2 (27, 40) 45, 41, 41, 37 [5, 4, 2], [4, 4, 1] [89, 45, 18]
(28, 41) 15 1, 2 (30, 40) 53, 49, 49, 45 [5, 4, 2], [4, 4, 1] [89, 53, 15]
(28, 41) 15 1, 3 (31, 40) 55, 49, 51, 45 [9, 6, 3], [4, 4, 1] [93, 55, 15]
(28, 41) 15 2, 2 (30, 39) 55, 50, 49, 45 [5, 4, 2], [6, 5, 2] [91, 54, 15]
(28, 41) 15 2, 3 (31, 39) 56, 50, 51, 45 [9, 6, 3], [6, 5, 2] [95, 56, 15]
(28, 43) 17 2, 2 (30, 41) 49, 45, 45, 41 [5, 4, 2], [5, 4, 2] [90, 49, 17]
(28, 43) 17 3, 2 (30, 40) 53, 49, 45, 41 [5, 4, 2], [9, 8, 2] [94, 53, 16]

[5, 4, 2], [11, 8, 3] [96, 53, 17]
(28, 43) 17 3, 3 (31, 40) 55, 49, 47, 41 [9, 6, 3], [11, 8, 3] [100, 55, 17]
(30, 41) 13 1, 3 (33, 50) 59, 53, 55, 49 [9, 6, 3], [4, 4, 1] [93, 59, 13]
(30, 41) 13 2, 3 (33, 49) 60, 54, 55, 49 [9, 6, 3], [6, 5, 2] [95, 60, 13]
(30, 49) 21 3, 1 (31, 46) 39, 37, 35, 33 [2, 2, 1], [7, 4, 3] [89, 39, 21]
(31, 3) 60 6, 3 (37, 0) 10, 6, 6, 2 [10, 4, 6], [5, 4, 2] [95, 10, 53]

[10, 4, 6], [7, 4, 3] [97, 10, 54]
[13, 4, 7], [8, 4, 4] [101, 10, 55]

(31, 3) 60 9, 3 (40, 0) 14, 10, 6, 2 [20, 8, 9], [5, 4, 2] [105, 14, 53]
[20, 8, 9], [7, 4, 3] [107, 14, 54]

(31, 3) 60 6, 4 (37, 79) 11, 6, 7, 2 [13, 4, 7], [10, 5, 5] [103, 11, 55]
[14, 4, 8], [11, 5, 6] [105, 11, 56]

(34, 41) 9 1, 2 (36, 40) 67, 63, 63, 59 [5, 4, 2], [4, 4, 1] [89, 67, 9]
(34, 41) 9 2, 2 (36, 39) 68, 64, 63, 59 [5, 4, 2], [6, 5, 2] [91, 68, 9]
(34, 43) 11 2, 2 (36, 41) 63, 59, 59, 55 [5, 4, 2], [5, 4, 2] [90, 63, 11]
(34, 43) 11 2, 3 (37, 41) 67, 59, 63, 55 [11, 8, 3], [5, 4, 2] [96, 67, 11]
(37, 43) 8 2, 2 (39, 41) 71, 67, 67, 63 [5, 4, 2], [5, 4, 2] [90, 71, 8]
(37, 3) 48 3, 3 (40, 0) 14, 10, 10, 6 [5, 4, 2], [5, 4, 2] [90, 14, 46]

[5, 4, 2], [7, 4, 3] [92, 14, 47]
[7, 4, 3], [7, 4, 3] [94, 14, 48]

(37, 3) 48 3, 4 (41, 0) 15, 10, 11, 6 [9, 5, 4], [5, 4, 2] [94, 15, 47]
[9, 5, 4], [7, 4, 3] [96, 15, 48]

(37, 3) 48 4, 4 (41, 79) 16, 11, 11, 6 [6, 5, 2], [9, 5, 4] [95, 16, 46]
[9, 5, 4], [9, 5, 4] [98, 16, 48]

(30, 49) 21 3, 1 (31, 46) 39, 37, 35, 33 [2, 2, 1], [4, 2, 3] [86, 37, 21]
(37, 3) 48 3, 3 (40, 0) 14, 10, 10, 6 [5, 4, 2], [4, 2, 3] [89, 12, 47]
(37, 0) 48 3, 3 (40, 0) 14, 10, 10, 6 [7, 4, 3], [4, 2, 3] [91, 12, 48]
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Table 11: Construction XX: q = 3, w = 121

(a, b) d(C0) i, j (x, y) k, k1, k2, k0 aux. codes result

(52, 62) 12 3,2 (55, 60) 101, 96, 91, 86 [13, 10, 3], [6, 5, 2] [140, 101, 12]
(0, 15) 17 1,3 (1, 12) 81, 76, 80, 75 [6, 5, 2], [1, 1, 1] [128, 81, 16]

[4, 2, 3], [1, 1, 1] [126, 78, 17]
[8, 5, 3], [1, 1, 1] [130, 81, 17]

(0, 15) 17 1,5 (1, 10) 86, 76, 85, 75 [1, 1, 1], [11, 6, 5] [133, 82, 17]
[1, 1, 1], [14, 8, 5] [136, 84, 17]

(46, 62) 18 3,2 (49, 60) 81, 76, 76, 71 [6, 5, 2], [4, 2, 3] [131, 78, 18]
[6, 5, 2], [8, 5, 3] [135, 81, 18]

(41, 62) 23 3,2 (44, 60) 71, 66, 66, 61 [6, 5, 2], [6, 5, 2] [133, 71, 22]
[6, 5, 2], [4, 2, 3] [131, 68, 23]
[6, 5, 2], [8, 5, 3] [135, 71, 23]

(55, 1) 69 6,2 (61, 120) 16, 15, 11, 10 [2, 1, 2], [6, 5, 2] [129, 16, 65]
(55, 1) 69 6,2 (61, 120) 16, 15, 11, 10 [2, 1, 2], [11, 5, 6] [134, 16, 69]
(46, 1) 78 9,2 (55, 120) 11, 10, 6, 5 [6, 5, 2], [2, 1, 2] [129, 11, 71]

[2, 1, 2], [11, 5, 6] [134, 11, 75]
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Table 12: Construction XX: q = 4, w = 63

(a, b) d(C0) i, j (x, y) k, k1, k2, k0 aux. codes result

(9, 22) 15 1, 2 (11, 21) 38, 35, 35, 32 [4, 3, 2], [3, 3, 1] [70, 38, 15]
(11, 22) 13 1, 2 (13, 21) 44, 38, 41, 35 [7, 6, 2], [3, 3, 1] [73, 44, 13]
(13, 22) 11 1, 2 (15, 21) 47, 44, 44, 41 [4, 3, 2], [3, 3, 1] [70, 47, 11]
(13, 22) 11 1, 3 (16, 21) 50, 44, 47, 41 [9, 6, 3], [3, 3, 1] [75, 50, 11]
(13, 25) 14 2, 2 (15, 23) 41, 38, 38, 35 [4, 3, 2], [4, 3, 2] [71, 41, 14]
(15, 22) 9 1, 2 (17, 21) 53, 47, 50, 44 [7, 6, 2], [3, 3, 1] [73, 53, 9]
(17, 25) 10 2, 2 (19, 23) 50, 47, 47, 44 [4, 3, 2], [4, 3, 2] [71, 50, 10]
(17, 43) 28 1, 3 (20, 42) 22, 19, 19, 16 [5, 3, 3], [3, 3, 1] [71, 22, 28]
(17, 43) 28 1, 4 (21, 42) 25, 19, 22, 16 [10, 6, 4], [3, 3, 1] [76, 25, 28]
(17, 43) 28 2, 3 (20, 41) 23, 20, 19, 16 [5, 3, 3], [5, 4, 2] [73, 23, 28]
(17, 43) 28 2, 4 (21, 41) 26, 20, 22, 16 [10, 6, 4], [5, 4, 2] [78, 26, 28]
(17, 46) 31 3, 4 (21, 43) 22, 16, 19, 13 [7, 6, 2], [5, 3, 3] [75, 22, 29]

[10, 6, 4], [5, 3, 3] [78, 22, 31]
(17, 46) 31 3, 5 (22, 43) 23, 16, 20, 13 [11, 7, 4], [5, 3, 3] [79, 23, 30]
(17, 46) 31 4, 4 (21, 42) 25, 19, 19, 13 [7, 6, 2], [10, 6, 4] [80, 25, 29]

[10, 6, 4], [10, 6, 4] [83, 25, 31]

Table 13: Construction XX: q = 4, w = 85

(a, b) d(C0) i, j (x, y) k, k1, k2, k0 aux. codes result

(27, 35) 10 2, 2 (29, 33) 69, 65, 67, 63 [5, 4, 2], [3, 2, 2] [93, 69, 10]
(27, 36) 11 1, 2 (29, 35) 67, 63, 63, 59 [5, 4, 2], [4, 4, 1] [94, 67, 11]
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Table 14: Construction XX iterated: q = 2, w = 127

l r1, r2, r3 k1, k2, k3 l′ k aux. codes result

0 12,14,18 84,77,70 125 77 [8, 7, 2], [3, 2, 2], [14, 9, 4] [152, 79, 22]
[8, 7, 2], [4, 3, 2], [15, 10, 4] [154, 80, 22]

1 42,46,54 29,22,15 123 21 [9, 8, 2], [8, 4, 4], [23, 11, 8] [167, 26, 57]
[9, 8, 2], [4, 1, 4], [20, 8, 8] [160, 23, 57]

[13, 8, 4], [8, 4, 4], [23, 11, 8] [171, 26, 59]
[13, 8, 4], [4, 1, 4], [20, 8, 8] [164, 23, 59]

0 42,46,54 28,21,14 123 21 [8, 7, 2], [8, 4, 4], [23, 11, 8] [166, 25, 58]
0 42,46,54 28,21,14 123 21 [8, 7, 2], [7, 3, 4], [22, 10, 8] [164, 24, 58]

[12, 7, 4], [8, 4, 4], [23, 11, 8] [170, 25, 60]
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Table 15: Construction XX iterated: q = 2, w = 255

l r1, r2, r3 k1, k2, k3 l′ k aux. codes result

249 254,255,2 231,230,222 247 223 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 231, 12]
245 254,255,2 215,214,206 243 207 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 215, 16]
0 8,10,12 222,214,206 253 214 [9, 8, 2], [3, 2, 2], [11, 10, 2] [278, 216, 16]
1 14,16,18 199,191,187 0 198 [1, 1, 1], [2, 1, 2], [6, 5, 2] [264, 192, 20]

[1, 1, 1], [3, 2, 2], [7, 6, 2] [266, 193, 20]
239 254,255,2 191,190,182 237 187 [5, 4, 2], [1, 1, 1], [10, 9, 2] [271, 191, 22]
0 14,16,18 198,190,186 253 190 [9, 8, 2], [3, 2, 2], [7, 6, 2] [274, 192, 22]

237 254,255,2 187,186,178 235 179 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 187, 24]
0 16,18,20 190,186,178 253 182 [9, 8, 2], [3, 2, 2], [11, 10, 2] [278, 188, 24]

235 254,255,2 179,178,170 233 171 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 179, 26]
0 18,20,22 186,178,170 253 178 [9, 8, 2], [3, 2, 2], [11, 10, 2] [278, 180, 26]

233 254,255,2 171,170,162 231 163 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 171, 28]
0 20,22,24 178,170,162 253 170 [9, 8, 2], [3, 2, 2], [11, 10, 2] [278, 172, 28]

231 254,255,2 163,162,154 229 155 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 163, 30]
0 22,24,26 170,162,154 253 162 [9, 8, 2], [3, 2, 2], [11, 10, 2] [278, 164, 30]

229 254,255,2 155,154,146 227 147 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 155, 32]
0 24,26,28 162,154,146 253 154 [9, 8, 2], [3, 2, 2], [11, 10, 2] [278, 156, 32]

213 254,255,2 115,114,106 211 107 [9, 8, 2], [1, 1, 1], [10, 9, 2] [275, 115, 48]
1 46,50,52 99,91,87 0 98 [1, 1, 1], [4, 1, 4], [6, 5, 2] [266, 92, 54]

205 254,255,2 91,90,82 203 87 [5, 4, 2], [1, 1, 1], [10, 9, 2] [271, 91, 56]
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Table 16: Construction XX iterated: q = 3, w = 80

l r1, r2, r3 k1, k2, k3 l′ k aux. codes result

1 7,9,12 60,56,50 0 59 [1, 1, 1], [2, 1, 2], [10, 7, 3] [93, 57, 14]
1 16,19,21 38,34,32 0 37 [1, 1, 1], [3, 1, 3], [4, 3, 2] [88, 35, 23]
1 40,43,49 15,11,7 0 14 [1, 1, 1], [4, 2, 3], [12, 6, 6] [97, 13, 51]
1 40,43,52 15,11,5 0 14 [1, 1, 1], [3, 1, 3], [19, 7, 9] [103, 12, 54]

[1, 1, 1], [4, 2, 3], [20, 8, 9] [105, 13, 54]
31 79,0,9 7,6,2 28 5 [4, 2, 3], [1, 1, 1], [11, 5, 6] [96, 7, 60]
1 49,52,79 7,5,1 0 6 [1, 1, 1], [4, 2, 3], [44, 6, 27] [129, 7, 81]
40 49,50,52 55,54,49 37 47 [11, 8, 3], [1, 1, 1], [6, 5, 2] [98, 54, 17]
40 80,83,89 14,10,6 39 10 [4, 4, 1], [4, 2, 3], [12, 6, 6] [100, 12, 52]
41 80,83,89 15,11,7 39 10 [6, 5, 2], [4, 2, 3], [12, 6, 6] [102, 13, 52]
41 79,80,89 16,15,7 39 11 [6, 5, 2], [1, 1, 1], [21, 9, 9] [108, 16, 52]
0 39,40,43 15,14,10 77 11 [5, 4, 2], [1, 1, 1], [6, 5, 2] [92, 15, 46]
1 39,40,43 16,15,11 77 11 [9, 5, 4], [1, 1, 1], [6, 5, 2] [96, 16, 47]
37 79,80,3 11,10,6 31 7 [10, 4, 6], [1, 1, 1], [6, 5, 2] [97, 11, 53]
0 40,43,49 14,10,6 77 10 [5, 4, 2], [4, 2, 3], [12, 6, 6] [101, 12, 53]
0 39,40,49 15,14,6 77 11 [5, 4, 2], [1, 1, 1], [21, 9, 9] [107, 15, 53]

Table 17: Construction XX iterated: q = 4, w = 63

l r1, r2, r3 k1, k2, k3 l′ k aux. codes result

21 41,42,46 26,25,19 19 20 [7, 6, 2], [1, 1, 1], [11, 7, 4] [82, 26, 29]
22 41,42,46 27,26,20 20 23 [5, 4, 2], [1, 1, 1], [11, 7, 4] [80, 27, 28]
0 41,42,46 7,6,3 59 4 [6, 3, 4], [1, 1, 1], [5, 4, 2] [75, 7, 50]
41 62,63,4 25,22,16 38 20 [5, 3, 3], [1, 1, 1], [8, 7, 2] [77, 23, 29]

[5, 3, 3], [1, 1, 1], [11, 7, 4] [80, 23, 31]
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Table 18: Construction X plus: q = 2, w = 127

pair of codes C D aux. code result

[127, 50, 27] ⊃ [127, 43, 31] (1, 26) (1, 28) [4, 1, 4] [132, 44, 32]
[8, 4, 4] [136, 47, 32]
[12, 7, 4] [140, 50, 32]

[127, 57, 23] ⊃ [127, 43, 31] (1, 22) (1, 28) [24, 12, 8] [152, 55, 32]
[127, 43, 31] ⊃ [127, 29, 43] (1, 28) (1, 42) [18, 9, 6] [146, 38, 38]

[28, 10, 10] [156, 39, 42]
[16, 11, 4] [144, 40, 36]
[32, 11, 12] [160, 40, 44]
[24, 12, 8] [152, 41, 40]
[34, 12, 12] [162, 41, 44]
[32, 13, 10] [160, 42, 42]
[15, 14, 2] [143, 43, 34]
[20, 14, 4] [148, 43, 36]
[24, 14, 6] [152, 43, 38]
[28, 14, 8] [156, 43, 40]
[34, 14, 10] [162, 43, 42]
[37, 14, 12] [165, 43, 44]
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Table 19: Construction X plus: q = 2, w = 255

pair of codes C D aux. code result

[255, 79, 55] ⊃ [255, 71, 61] (1, 54) (1, 58) [6, 1, 6] [262, 72, 62]
[9, 2, 6] [265, 73, 62]
[12, 4, 6] [268, 75, 62]

[255, 71, 61] ⊃ [255, 63, 63] (1, 58) (1, 60) [9, 8, 2] [264, 71, 63]

Table 20: Construction X iterated plus: q = 2, w = 127

chain of codes auxiliary codes result

[127, 57, 23] ⊃ [127, 50, 27] ⊃ [127, 43, 31] [4, 1, 4], [13, 8, 4] [144, 51, 31]
[6, 2, 4], [14, 9, 4] [147, 52, 31]
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5 Some good codes

5.1 Check matrix of [33, 21, 7]3

010000000000212121102002211201221
100000000000112121011201011111121
001000000000102121002121220000001
000100000000222000202211000010021
000010000000002220002022111011120
000001000000022200020221102100220
000000100000001211012012000201210
000000010000012110120120002020201
000000001000121101201200000122101
000000000100000121101201202200012
000000000010000012110120120021000
000000000001212122010011220011110

5.2 Generator matrix of [25, 10, 10]3

1112101001200221000000000
2120001111210110100000000
1200212010111020010000000
2102102222001020001000000
0122021120020220000100000
1121010010202210000010000
2001221012020020000001000
0022212211111200000000100
0221200102221000000000010
2102222001002100000000001
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5.3 Generator matrix of [53, 6, 36]4

10000032303321033010333122002333103213001320322001132
01000021113031032331333011123213202221223110120321010
00100010220203122232331032132223102332211303302221302
00010001032303321030313033122002333123003103123120232
00001010323033210331030331220023331002331012330022133
00000103230332103303103312200233310330210133202112031
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