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1 Introduction

(t,m, s)−nets were defined by Niederreiter [17] in the context of quasi-Monte
Carlo methods of numerical integration. Niederreiter pointed out close con-
nections to certain combinatorial and algebraic structures. This was made
precise in the work of Lawrence, Mullen and Schmid [11, 15, 24]. These
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authors introduce a large class of finite combinatorial structures, which we
will call ordered orthogonal arrays OOA. These OOA contain orthogo-
nal arrays as a subclass. (t,m, s)q-nets (that is, (t,m, s)-nets in base q as
in the original Definition 2.2 in [17]) are equivalent to another parametric
subclass of OOA. Loosely speaking a (t,m, s)q-net is linear if it is defined
over the field IFq with q elements. The duality between linear codes and lin-
ear orthogonal arrays carries over to the more general setting of linear OOA
(see [14] or [20]). Here OOA generalize orthogonal arrays (dual codes). The
weight function generalizing Hamming weight was first described by Nieder-
reiter in [16, 18]. It was systematically exploited by Rosenbloom-Tsfasman
in [23]. We use the term NRT-space for the corresponding metric space. A
description is in Section 2.

Our main results are generalizations of coding-theoretic construction tech-
niques from Hamming space to NRT-space, most notably concatenation
(equivalently: Kronecker products), the (u, u + v)-construction and the
Gilbert-Varshamov bound.

Let k = m−t denote the strength of a net. If a linear (t,m, s)q-net exists,
where m < s, then a linear code [s, s − m, k + 1]q exists. From this point
of view it is a basic problem (the problem of net-embeddability) to decide
when a code [s, s−m, k +1]q can be completed to a linear (m−k,m, s)q-net.
More generally we ask when a linear OOA with certain parameters can be
embedded in a larger OOA. We speak of a theorem of Gilbert-Varshamov
type if the existence of the larger OOA can be guaranteed whenever the
parameters satisfy a certain numerical condition. In the final section we
apply our theoretical construction techniques as well as computer-generated
net embeddings of error-correcting codes to improve upon net-parameters for
nets of moderate strength and dimension defined over small fields.

2 Linear nets and linear ordered orthogonal

arrays

A (t,m, s)-net is a subset of Euclidean s−space. We mentioned in the intro-
duction that (t,m, s)-nets can equivalently be described by finite geometrical
objects. More precisely (t,m, s)-nets are equivalent to a subclass of ordered
orthogonal arrays. For our purposes this description is more natural. We
use it as a definition. Moreover we concentrate on the linear case.
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Definition 1. Let Ω = Ω(T,s) be a set of Ts elements, partitioned into s
blocks Bi, i = 1, 2 . . . , s, where Bi = {ω

(i)
1 , . . . , ω

(i)
T }. Each block carries a

total ordering:
ω

(i)
1 < ω

(i)
2 < · · · < ω

(i)
T .

This gives Ω the structure of a partially ordered set, the union of s totally
ordered sets of T points each. We consider Ω as a basis of a Ts−dimensional
vector space IF

(T,s)
q . An ideal in Ω is a set of elements closed under predeces-

sors. An antiideal is a subset closed under followers. Observe that antiideals
are precisely the complements of ideals.

We visualize elements x = (x
(i)
j ) ∈ IF

(T,s)
q , i = 1, . . . , s; j = 1, . . . , T either

as strings of length Ts, divided in s segments (the blocks) of length T each,
or as matrices with T rows and s columns. Refer to these representations as
vector notation and matrix notation, respectively. The interpretation of
x ∈ IF

(T,s)
q as a point in the s−dimensional unit cube is obtained by reading

the x
(i)
j for fixed i as the T first digits of the q−ary expansion of a real number

between 0 and 1. As an example, the point
0 0 1 1
1 1 1 0
1 0 0 1

in IF
(3,4)
2 is mapped

to the point (3
8
, 1

4
, 3

4
, 5

8
) ∈ [0, 1)4. This also motivates the hierarchical ordering

inside the blocks.
We introduce some more terminology, which will be helpful in describing

the basic parameters of NRT-space.

Definition 2. We refer to coordinate positions of IF
(T,s)
q as cells. They

are in obvious bijection with the elements of Ω. The breadth b = b(x) of

a vector x ∈ IF
(T,s)
q is the number of blocks Bi, i = 1, 2, . . . , s where x has

a nonzero entry. The ideal K = K(x) generated by x is the smallest ideal
containing the support of x. The breadth of an ideal K is the number of blocks
it intersects nontrivially. Let n = |K| be the size of K. The type π = π(K)
is the partition n, where the multiplicity fi of i as a part of π is the number
of blocks, which intersect K in i points. The breadth b(π) of a partition is
the number of its nonzero parts. If π = π(K(x)), then b(π) = b(x).

Definition 3 (NRT-metric). Let x ∈ IF
(T,s)
q . The weight of x is

ρ(x) = ρ(x, 0) =
s

∑

i=1

T − max{j | x
(i)
1 = . . . x

(i)
j = 0}

3



The distance ρ(x, y) is defined as ρ(x, y) = ρ(x−y). The minimum weight

(=minimum distance) of a subspace C ⊆ IF
(T,s)
q is the minimum among the

weights of its nonzero members

We may visualize the weight ρ(x) as follows: in each block let the leading
zeroes evaporate. The number of remaining cells is ρ(x). It is clear that ρ is
a metric. Also, Ts − ρ(x, y) is the size of the maximal ideal on which x and
y agree.

Definition 4. Let S
(T,s)
l be the number of vectors of weight l in IF

(T,s)
q and

V
(T,s)
l =

∑l

i=0 S
(T,s)
i the volume of a ball of radius l in IF

(T,s)
q .

Proposition 1. We have

S
(T,s)
l =

∑

π

(

s

fT , . . . , f1, s − b

)

(q − 1)bql−b,

where the sum is over all partitions π of l of depth ≤ T, and b = b(π), fi =
fi(π).

Proof. S
(T,s)
l counts the vectors of IF

(T,s)
q , whose support generates an ideal

of size l. The type of such an ideal K is a partition π as above. The number
of vectors generating a fixed K of breadth b clearly is (q− 1)bql−b. It remains
to count the ideals K with a given type π. This number is

(

s

fT

)(

s − fT

fT−1

)

. . .

(

s − fT − · · · − f2

f1

)

=

(

s

fT , . . . , f1, s − b

)

.

We now define the objects we are primarily interested in.

Definition 5. A linear subspace (code) C ⊆ IF
(T,s)
q has strength k = k(C)

if k is maximal such that the projection from C to any ideal of size k is
surjective. We also call such a subspace an ordered orthogonal array
OOA, which is q−linear, has length s, depth T, dimension m = dim(C)
and strength k.

A linear (m − k,m, s)q-net is equivalent to an m−dimensional code C ⊆

IF
(k,s)
q of strength k. Observe also that linear OOA of depth 1 are precisely

linear orthogonal arrays, in other words an m−dimensional code in IF
(1,s)
q of

strength k is the dual (with respect to the ordinary dot product) of a code
[s, s − m, k + 1]q.
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Definition 6. Define a symmetric bilinear form on IF
(T,s)
q by

〈x, y〉 =
s

∑

i=1

x
(i)
1 y

(i)
T + x

(i)
2 y

(i)
T−1 + · · · + x

(i)
T y

(i)
1 .

The dual C⊥ is defined with respect to this scalar product.

Observe that IF
(1,s)
q is the usual Hamming space, with its metric, the dot

product and the corresponding notion of duality. Generalizing the notion of
Hamming space we may call IF

(T,s)
q with the NRT-metric and the correspond-

ing notion of strength the NRT-space. It is an important albeit elementary
observation that the duality (in Hamming space) between strength and min-
imum distance can be extended to our setting (see [14] or [20]).

Theorem 1. Let C ⊆ IF
(T,s)
q be a linear subspace (code). Then

ρ(C⊥) = k(C) + 1.

We are led to the natural problem of generalizing coding-theoretic bounds
and constructions from Hamming space to NRT-space.

3 Trace codes

Theorem 2. Let C ⊆ IF
(T,s)
qr of dimension m and strength k. We can con-

struct C̃ ⊆ IF
(T,rs)
q of dimension rm and strength k.

Proof. Let {b1, . . . , br} be a basis of F = IFqr | IFq. We describe an
IFq−isomorphism˜: C −→ C̃ as follows: Let tr : F −→ IFq be the trace and
x ∈ C. The entry of x̃ in coordinate (i, a), where 1 ≤ i ≤ s, 1 ≤ a ≤ r and

depth j is x̃
(i,a)
j = tr(x

(i)
j ba). It is obvious that we have an IFq− isomorphism

as the kernel is trivial. In particular dim(C̃) = mr. It is also obvious that C̃
still has strength k.

The special case of nets was proved in [22].

4 Concatenation

The following construction may be seen as a concatenation construction or
as a Kronecker product for linear codes in NRT-space. A different Kronecker
product construction is in [21].
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Theorem 3. Let C1 ⊆ IF
(T1,s1)
qr of dimension m and C2 ⊆ IF

(T2,s2)
q of dimen-

sion r. Let α : IFqr −→ C2 be an IFq−isomorphism. Define the concatenation

C2 ◦ C1 = α(C1) ⊂ IF
(T1T2,s1s2)
q as follows (in matrix notation): each x ∈ C1

yields α(x) ∈ C2◦C1 by applying α to each entry of x. Then dim(C2◦C1) = mr
and k(C2 ◦ C1) ≥ min{k(C1), k(C2)}.

Proof. As the elements of C2 ◦ C1 are in bijection with those of C1, the state-
ment concerning the dimension is obvious. Let k = min{k(C1), k(C2)}. Con-
sider an ideal K of size k in Ω(T1T2,s1s2). The natural projection K to Ω(T1,s1)

is an ideal of size ≤ k. We can therefore find x ∈ C1 such that α(x) has
arbitrarily chosen entries from C2 in the positions of this ideal. For each
(i1, j1) ∈ K the intersection of K with the corresponding Ω(T2,s2) is itself an
ideal, clearly of size ≤ k. The claim follows.

The special cases of Theorem 3 when either C1 or C2 is a net and the other
is an OA (T2 = 1 or T1 = 1) is in [22].

5 The (u, u + v)-construction

Theorem 4. For i = 1, 2 let Ci ⊂ IF
(T,si)
q be linear OOA of dimension mi

and strength ki, where s1 ≤ s2. We can construct C ⊂ IF
(T,s1+s2)
q of dimension

m1 + m2 and strength min{k2, 2k1 + 1}.

Proof. This is a direct generalization of the famous (u, u + v)-construction
in coding theory, which seems to go back to [26]. Consider the duals C⊥

i .
These have dimension Tsi − mi and distance ki + 1. We apply the (u, u +
v)-construction to C⊥

i . Our C will be obtained by dualizing (back). More

precisely let Ci = (C
(1)
i , C

(2)
i , . . . , C

(si)
i ) be a generic element of Ci, i = 1, 2.

We define C⊥ as the image of the (u, u + v)-mapping

u : C⊥
1 ⊕ C⊥

2 −→ IF (T,s1+s2)
q

given by

u(C1, C2) = (C
(1)
1 , C

(1)
1 + C

(1)
2 , . . . , C

(s1)
1 , C

(s1)
1 + C

(s1)
2 , C

(s1+1)
2 , . . . , C

(s2)
2 ).

It is obvious that u is IFq-linear and injective. In particular dim(C⊥) =
(Ts1−m1)+(Ts2−m2) = T (s1 +s2)− (m1 +m2), hence dim(C) = m1 +m2.
In order to find the strength of C we have to determine the distance of C⊥.
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Let C2 = 0, C1 6= 0. Then ρ(C1, 0) = 2ρ(C1) ≥ 2(k1 + 1). Let C2 6= 0. For

each j = 1, 2, . . . , s1 the weight of the pair of columns (C
(j)
1 , C

(j)
1 + C

(j)
2 ) is

at least the weight of the single column C
(j)
2 . It follows ρ(C1, C2) ≥ k2 + 1 if

C2 6= 0.

Let k2 = 2k1 +1. In order to obtain a net as result, we must have T = k2.
This means that C2 is a (t2,m2, s2)q-net, k2 = m2 − t2, whereas C1 has depth
T = k2 > k1 and strength k1. The effective depth of C1 is therefore k1, and C1

is obtained from a net of strength k1 by adding meaningless rows. We have
seen the following:

Corollary 1. Assume k2 ≤ 2k1 + 1 and there exist linear (t1,m1, s1)q- and
(t2,m2, s2)q-nets, where ki = mi − ti and s1 ≤ s2. Then we can construct a
linear (m1 + t2,m1 + m2, s1 + s2)q-net.

An application of Corollary 1 to nets (16, 23, 127)2 and (2, 5, 15)2 yields
a (21, 28, 142)2-net. As a ternary example we obtain an (11, 22, 23)3-net
from a (4, 15, 12)3-net and a (2, 7, 11)3-net. A different generalization of the
(u, u + v)-construction is attempted in [20].

As an example start from (6, 17, 10)2 and apply Corollary 1 with (3, 8, 10)2

as second ingredient. The result is a (14, 25, 20)2-net. More examples will
show up in the last section. Just as in coding theory, it is possible to apply
Corollary 1 in a recursive fashion.

The (u, u + v)-construction can be generalized from the linear case to
not necessarily linear ordered orthogonal arrays. The following definition
generalizes Definition 5.

Definition 7. Let A be an alphabet of size |A| = q. A multisubset C ⊆ A(T,s)

of size qm has strength k = k(C) if k is maximal such that for every ideal K
of size k and every k-tuple of entries in K precisely qm−k elements of C have
the prescribed projection to K. We call C an ordered orthogonal array
OOA of length s, depth T, dimension m and strength k.

Observe that in the nonlinear case the dimension m need not be integer.

Theorem 5. Let A be an alphabet of size |A| = q. For i = 1, 2 let Ci ⊂
A(T,si) of dimension mi and strength ki, where s1 ≤ s2. We can construct
C ⊂ A(T,s1+s2) of dimension m1 + m2 and strength k = min{k2, 2k1 + 1}.
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Proof. We write the elements of A(T,s) as Ts-tuples with s sections of length
T (this is the vector notation mentioned in Section 2). For every pair u, v,
where u ∈ C2 and v ∈ C1, we define a row in A(T,s1+s2) by r(u, v) = (u, u+v).
Here we have chosen a structure of an abelian group on A. The addition in
u+v is componentwise. The last s2−s1 blocks of u have been removed before
performing the addition. Let the array C consist of all these rows r(u, v). We
have to show that C has strength ≥ k.

Denote the cells of A(T,s1+s2) by (L, i, j), where i ≤ s2, j ≤ T (these form
the left part L) and (R, i, j), where i ≤ s1, j ≤ T (the right part R). Let
K be an ideal of size k. Let C(K) = {(i, j)|(R, i, j) ∈ K and (L, i, j) ∈ K}
and c = |C(K)|. Let an arbitrary k-tuple be prescribed on the cells from
K. The projection of u to the cells from K ∩ L are prescribed. Let x be a
tuple on (R,C(K)) and Ux the set of elements u ∈ C2 having the prescribed
projection on K ∩ L and projecting to x on (R,C(K)). Let further Vx be
the set of elements v ∈ C1 such that u + v has the prescribed projection on
(R,C(K)). For every v ∈ Vx let Ux,v consist of those u ∈ Ux such that u + v
has the prescribed projection on (K ∩ R) \ (R,C(K)). The pairs (u, v) such
that r(u, v) has the required projection on K is then

⋃

x

⋃

v∈Vx

(Ux,v, {v}).

Observe that c ≤ k1 as 2c ≤ k. We are done.

It follows that Corollary 1 generalizes from the linear case to arbitrary
nets.

6 The finite Gilbert-Varshamov bounds for

OOA

Let a code C ⊆ IF
(T−1,s)
q of dimension m and strength k be given. It can

be represented as follows: let a(r), r = 1, . . . m be a basis of C. Write the
a(r) as rows of a matrix A. The section corresponding to block Bi is a(i) =

(a
(i)
1 , . . . , a

(i)
T−1), where a

(i)
j ∈ IFm

q .

We want to find vectors a
(i)
T , which complement C to an m-dimensional

code in IF
(T,s)
q of strength k. It can be assumed that a

(i)
T , i < s have been

found already. Our counting condition must be strong enough to guarantee
the existence of a

(s)
T .
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Each ideal K ⊂ Ω(T,s−1) of size l ≤ k−T yields a condition. The number
of candidates for a

(s)
T excluded by K is qT−1 times the number of vectors in

IF
(T,s−1)
q whose support generates K. We obtain the following:

Theorem 6. Let C ⊆ IF
(T−1,s)
q of dimension m and strength ≥ k be given.

Assume
V

(T,s−1)
k−T < qm−T+1,

equivalently

∑

l≤k−T

∑

π

(q − 1)bql−b

(

s − 1

fT , . . . , f1, s − 1 − b

)

< qm−T+1,

where the sum is over all partitions of l of depth ≤ T, and b is the breadth of
π. Then there is a code D ⊆ IF

(T,s)
q of dimension m and strength ≥ k, which

projects to C.

We mention that Theorem 6 generalizes the strengthened Gilbert-Varshamov
bound ([13], p. 34, Theorem 2 of [1]) from Hamming space to NRT-space. It
is stronger than the generalization of the ordinary Gilbert-Varshamov bound
obtained in [23]. Theorem 6 has the following obvious corollary:

Theorem 7. Assume V
(T,s−1)
k−T < qm−T+1 holds for T = 1, 2, . . . , k − 1. Then

there is a linear (m−k,m, s)q-net, equivalently a code C ⊂ IF
(k,s)
q of dimension

m and strength ≥ k.

7 Net-embeddable error-correcting codes

Definition 8. Let C be a linear code [s, s − m, k + 1]q (equivalently: C⊥ ⊆

IF
(1,s)
q has dimension m and strength ≥ k). We call C net-embeddable if

there is a linear (m − k,m, s)q-net projecting to C⊥.

Recall that we identify linear nets with the corresponding linear subspaces
of IF

(k,s)
q . Net-embeddability is guaranteed if Theorem 6 can be applied recur-

sively, for T = 2, . . . , k. In this section we apply our method in the following
form:

Theorem 8. Assume a linear code [s, s − m, k + 1]q exists and V
(T,s−1)
k−T <

qm−T+1 holds for T = 2, . . . , k − 1. Then there is an (m − k,m, s)q-net.
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The following lemma simplifies the comparison between the corresponding
conditions.

Lemma 1. Let Vq(r, n) = V
(1,n)
r be the volume of a ball of radius r in Ham-

ming space IF
(1,n)
q . If n ≥ 2q−1

q−1
r + q

q−1
, then

Vq(r + 1, n) ≥ qVq(r, n).

Proof. As Vq(r + 1, n) = Vq(r, n) +
(

n

r+1

)

(q − 1)r+1 the claim is equivalent to

Vq(r, n) ≤ (q − 1)r
(

n

r+1

)

. We have Vq(r, n) = Vq(r − 1, n) +
(

n

r

)

(q − 1)r. By

induction we have Vq(r − 1, n) ≤ (q − 1)r−1
(

n

r

)

. It suffices to show

(q − 1)r−1

(

n

r

)

+ (q − 1)r

(

n

r

)

≤ (q − 1)r

(

n

r + 1

)

,

equivalently
(

n

r

)

q ≤
(

n

r+1

)

(q − 1). We have

(

n

r + 1

)

/

(

n

r

)

= (n − r)/(r + 1).

Our claim is therefore q(r+1) ≤ (q−1)(n−r), equivalently n ≥ 2q−1
q−1

r+ q

q−1
.

It is easy to see that for strength k < 3 net-embeddability is always
satisfied. In the case of strength 3 we are given a code [s, s − m, 4]q. Geo-
metrically this is an s−cap in projective space PG(m−1, q). Depth 2 can be

reached provided V
(2,s−1)
1 = 1+(s−1)(q−1) < qm−1. The depth 3 condition

is then automatically satisfied. We conclude that each code [s, s − m, 4]q
is net-embeddable provided s < 1 + (qm−1 − 1)/(q − 1). This has been
proved in [24]. The first non-embeddable codes occur in this case when
q = 2 (the extended binary Hamming code is non-embeddable) and in char-
acteristic 2 when m = 3. The best binary strength 3 net parameters are
(m − 3,m, 2m−1 − 1)2.

For strength 4 the depth 2 condition is strongest. We conclude that a
linear code [s, s − m, 5]q is net-embeddable provided V

(2,s−1)
2 < qm−1. As

V
(2,s−1)
2 = Vq(2, s− 1) + q(q − 1)(s− 1) we arrive at a statement first proved

in [25]. The present paper grew out of an attempt to generalize this result.
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7.1 Strength 5

Again the depth 2 condition is dominating. This implies that every linear
code [s, s−m, 6]q, which satisfies Vq(3, s−1)+q(q−1)(s−1)Vq(1, s−2) < qm−1

is net-embeddable.

7.2 Strength 6

It follows from Lemma 1 that the condition for depth 3 is weaker than the
depth 2 condition provided s ≥ 12. The conditions for larger depths are
weaker yet. This implies that each linear code [s, s − m, 7]q, s ≥ 12 which
satisfies Vq(4, s − 1) + q(q − 1)(s − 1)Vq(2, s − 2) + q2(q − 1)2

(

s−1
2

)

< qm−1 is
net-embeddable.

8 Net parameters

We present tables of net parameters (m − k,m, s)q. For q = 2, 3, 4, 5 we list
k,m, s. Observe that in case s > m the underlying error-correcting code has
parameters [s, s−m, k + 1]q. As a starting point we used the tables in [5] for
q = 2, 3, 5. Label t refers to surviving entries from these tables. In some cases
when there was a choice we replaced label t by one of the constructions below.
Net parameters from [22, 19] are labelled a and b, respectively. The values for
strength 3 in the non-binary case follow from cap constructions, see [9]. The
label used for nets obtained from embeddings of caps is c. The caps leading to
values (6, 9, 1216)3 and (8, 11, 6464)3 are constructed in [7]. Many values for
strength k = 4 are derived from the families described in [2, 8]. More families
of binary nets of moderate strengths based on cyclic codes will be constructed
in a forthcoming publication. The corresponding table entries carry the sub-
script f. The nets with subscript e are computer-constructions obtained by
the second author. When s > m starting point is an error-correcting code.
Subscript u indicates an application of the (u, u + v)-construction. When
s ≤ m Theorem 7 (pure GV) is applied. The corresponding subscript is g. In
case s > m typically we start from a code parameter given in [3] and apply
Theorem 8 to prove that it can be embedded in a net. The corresponding
entries are marked h.

A class of interesting constacyclic quaternary codes with d = 5 were

11



constructed in [10, 6]. We use parameters

[85, 77, 5]4, [171, 162, 5]4, [341, 331, 5]4, [683, 672, 5]4, [1365, 1353, 5]4,

[2731, 2718, 5]4, [5461, 5447, 5]4, [10923, 10908, 5]4.

In some cases, when no better construction seemed available, we used The-
orem 7 (subscript g) also when s > m. Some good nets can be derived from

Theorem 6 starting from C ⊂ IF
(T−1,s)
q of strength k for T > 2. All our ex-

amples have T = 3. These entries are labelled i. The depth 2 codes C are
derived from linear OA of strength k and length ≥ 2s in the most obvious
way, by identifying 2s coordinates of the space containing the OA with the
coordinates of Ω(2,s). The codes which we used as ingredients can either be
obtained from the data base [3] or from primitive BCH-codes. As an ex-
ample, a (12, 16, 3125)5-net is based on a [3125, 3109, 5]5-code, an extended
primitive BCH-code.

While we focused attention on linear nets, the tables contain also param-
eters of nonlinear nets. The only surviving parameters based on nonlinear
nets are Mark Lawrence’s (5, 21, 516)2 and (5, 25, 2503)2 from [12]. They
carry subscript L. Finally, we leave a blank for values (k,m) in the tables
whenever either we cannot construct a net of length s exceeding the entry in
cell (k,m − 1) or when we have reached a length of several thousand for a
dimension m′ < m already.

Notation in tables
indices explanation

t tables from [5]
a Niederreiter-Xing [22]
b Niederreiter [19]
c embedding of caps, see [9]
e computer embeddings
f Families from [2, 8]
g Theorem 7
h code embedding Theorem 8
i Theorem 6
u (u, u + v)-construction
L M. Lawrence’s nonlinear nets
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q=2

k\m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 7t 15t 31t 63t 127t 255t 511t 1023t

3 3t 7t 15t 31t 63t 127t 255t 511t 1023t 2047t 4095t 8191t

4 3t 5t 8t 11t 17f 23e 32e 47e 65f 81h 128e 151h 257f 510f

5 3t 5t 7t 10e 14e 20e 26e 36e 45e 69e 77e 129f 140e 257f

6 3t 5t 6t 9t 11t 15e 21e 23e 26e 36e 42e 48e 64e

7 3t 5t 6t 7t 11t 13e 16e 20e 23e 28e 34e 41e

8 3t 5t 6t 7t 9t 11e 14t 16e 19e 22e 26e

9 3t 5t 6t 7t 8t 10e 12e 14e 17t 20e

10 3t 5t 6t 7t 8t 9t 11e 13e 15e

11 3t 5t 6t 7t 8t 9t 10t 12e

12 3t 5t 6t 7t 8t 9t 10t

13 3t 5t 6t 7t 8t 9t

14 3t 5t 6t 7t 8t

15 3t 5t 6t 7t

k\m 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

4 513f 1025f 2046f 2049f 4097f 8190f 8193f

5 513f 516L 1025f 2049f 2053L 4097f 8193f

6 72e 79e 127e 130u 137h 164h 196h 511f 1023f 2047f

7 47e 58e 64e 127f 133i 137i 142u 511f 514u 518u 526u

8 30e 35e 39e 42g 47g 54h 64i 69h 78h 89h 128i 132i 133i

9 23e 26e 29e 34u 37u 40u 46u 60i 68i 71i 84i 100i 113i

10 17e 20t 23e 24t 25t 28b 31i 33i 35g 40u 43g 47g 52g 57g

11 14e 16e 18e 20u 22u 24g 28b 30u 33i 36u 37g 40g 45i

12 11e 13e 15e 16g 18b 19g 21g 23g 28b 31g 33g 36g

13 10t 11e 12e 13t 14t 16u 18u 19u 20u 22u 23g 28b 30b

14 9t 10t 11t 12t 13t 14t 15t 17t 18b 20g 21g 23g 28b

15 8t 9t 10t 11t 12t 13t 14t 15t 17t 18u 20u 20g 22g

k\m 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

6 2050u 2054u 2062u 8191f

7 2047f 2050u 2054u 2062u 8191f

8 145h 163h 184h 208h 234h 263h 273h 274h 276h 277h 294g 324g 357g 394g 435g 480g

9 128i 134i 135i 137h 152h 169h 187h 208h 230h 255h 282h 285h 286h 287h 289g

10 64i 69g 76h 84h 95i 128i 132i 136i 146h 161h 176h 193h 211h 231h 253h

11 50i 62i 68i 71i 75i 91i 100i 110i 121i 122h 133h 144h 156h 170h

12 39g 42g 45g 49g 53g 58g 62g 67g 73g 78g 85g 91g 99g 106g 115h 124h

13 33g 36i 38g 41g 44g 47g 51g 54g 64i 68i 71i 72g 77g 83g 89g 96g

14 30b 32g 35g 38i 40b 43g 46g 49g 52g 56g 60g 64g 68g 72g 77g

15 23g 28b 30b 32g 34b 37g 40b 43i 45g 48g 51g 54g 57g 61g 65g
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q=3

k\m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 13t 40t 121t 364t 1093t

3 4c 10c 20c 56c 112c 248c 532c 1216c 2744c 6464c

4 4t 8t 14e 26f 41f 80f 121f 242f 365f 728f 1093f 2186f 3281f 6560f 9841f

5 4t 7t 11e 18e 28e 38e 77e 95e 103e 104h 151h 219h 244h 245h

6 4t 7t 8t 13e 19e 25e 33e 42e 49h 65h 87h 110h

7 4t 7t 8t 11e 15e 20e 26e 34e 41i 43i 51h

8 4t 7t 8t 10t 14e 17e 22e 25g 32b

9 4t 7t 8t 10t 12t 15e 16t 18u 21g

10 4t 7t 8t 10t 12t 13t 14t 16t

11 4t 7t 8t 10t 12t 13t 14t 16t

12 4t 7t 8t 10t 12t 13t 14t

13 4t 7t 8t 10t 12t 13t

14 4t 7t 8t 10t 12t

15 4t 7t 8t 10t

k\m 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

5 660h 730h 731h 1985h 2188h 2189h 5959h 6562h 6563h 6564h 6565h 6566h 6567h 7262g 9557g

6 120h 201h 244h 245h 246h 610h 729h 730h 731h 1836h 2187h 2188h 2189h 5514h 6561h 6562h

7 64h 81h 121i 128h 160h 200h 364i 365i 390h 487h 1093i 1094i 1094i 1179h 3280i 3281i

8 37h 45h 54h 66h 80h 96h 117h 141h 170h 205h 246h 247h 364i 432h 520h 625h

9 25g 32b 35g 41g 49h 58h 68h 80h 95h 112h 131h 155h 182h 214h 245h 246h

10 19t 22i 25g 32b 34g 40b 46g 56b 61h 71h 82h 95h 121i 127h 146h 169h

11 19t 20g 23u 26g 32b 34g 40b 44g 56b 57g 65g 74h 85h 96h 110h

12 16t 19t 21g 24i 27i 32b 34g 40b 43g 56b 61g 69g 78g

13 14t 16t 19t 20t 22t 24t 28i 32b 34g 40b 43g 56b 59g

14 13t 14t 16t 19t 20t 22t 24t 25g 28t 32b 35g 40b 42g 56b

15 12t 13t 14t 16t 19t 20t 22t 24t 28t 29g 32b 35g 40b

k\m 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

6 6563h 6564h 6565h 6566h 6862g 8548g

7 3281i 3284u 3545h 4417h 5503h 6568h 6569h 6570h 6571h 6572h 6573h 6812g 8180g 9824g

8 733h 1093i 1094i 1306h 1569h 1885h 3280i 3281i 3284u 3288u 6567h 6568h 6569h 6570h

9 247h 405h 475h 556h 652h 732h 733h 796g 912g 1046g 1200g 1376g 1578g 1809g

10 194h 224h 364i 365i 365i 392h 451h 518h 573g 647g 731g 825g 932g

11 125h 142h 161h 183h 207h 235h 248h 249h 364i 400g 446g 497g 555g

12 88h 98h 111h 118h 127h 156h 175h 197h 220h 247h 248h 249h 273g 301g 333g 367g

13 66g 73g 82g 91g 101h 112h 125h 139h 154h 171h 190h 211h 234h 250h 251h 263g

14 57g 63g 70g 77g 85g 94g 104g 115h 125h 139h 153h 169h 186h 204h 225h

15 43g 56b 62g 68g 74g 82g 89g 98g 107g 117g 128h 139h 149h 168h
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q=4

k\m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 21t 85t 341t 1365t 5461t

3 5c 17c 41c 126c 288c 756c 2110c 4938c

4 5a 10e 19e 32e 85e 171e 341e 683e 965h 1366h 3861h 5462h

5 5a 9a 16e 26e 36e 64e 81e 96h 154h 245h 258h 619h 983h 1026h

6 5a 9a 12e 18e 26e 34e 45h 65h 81h 89h 187h 257h

7 5a 9a 10a 15e 20e 22g 30u 40h 53h 71h 94h

8 5a 9a 10a 13a 17e 20a 23g 29g 37h 47h

9 5a 9a 10a 13a 15a 17a 20a 21a 24g 29g

10 5a 9a 10a 13a 15a 17a 20a 21a

11 5a 9a 10a 13a 15a 17a 20a 21a

12 5a 9a 10a 13a 15a 17a 20a

13 5a 9a 10a 13a 15a 17a

14 5a 9a 10a 13a 15a

15 5a 9a 10a 13a

k\m 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

5 2479h 3937h 4098h 4099h 4103u 4119u 4278u 6046g 8549g

6 258h 259h 753h 1025h 1026h 1027h 3020h 4097h 4098h 4099h 4103u 4114u 4696g 6195g 8174g

7 111h 119h 219h 257h 258h 259h 325g 886h 1025h 1026h 1027h 1031u 3554h 4097h 4098h 4099h

8 60h 73h 85h 95h 112h 199h 252h 257h 258h 292g 355g 807h 1018h 1025h 1026h 1027h

9 36g 45h 55h 68h 84h 94h 128i 155h 190h 232h 260h 261h 512i 518h 632h 772h

10 26a 30g 36g 44g 52g 63h 76h 89h 101h 111h 155h 186h 222h 259h 260h 264g

11 26a 27a 31g 37g 43g 51g 60g 71h 83h 98h 115h 125h 132g 185h 217h

12 21a 26a 27a 28g 32g 37g 43g 50g 58g 68g 78h 87g 98g 110g 124g

13 20a 21a 26a 27a 29a 33a 38g 44g 50g 57g 66g 75g 86h 96h

14 17a 20a 21a 26a 27a 29a 33a 35g 39g 44g 50g 57g 65g 73g

15 15a 17a 20a 21a 26a 27a 29a 33a 36g 40g 45g 51g 57g

k\m 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

7 4103u 4114u 5153g 6491g 8178g

8 1157g 3240h 4084h 4097h 4098h 4099h 4100h 4618g 5629g 6861g 8363g

9 942h 1029h 2048i 2048i 2085h 2543h 3101h 3781h 4102h 4103h 4104h 4105h 4326g 5143g 6116g 7272g

10 308g 535h 637h 758h 903h 1028h 1029h 1030h 2048i 2155h 4101h 4102h 4103h

11 254h 259h 260g 298g 341g 391g 649h 758h 885h 1027h 1028h 1176g 1350g 1550g

12 140g 187h 215h 248h 258h 259h 292g 331g 374g 424g 666h 766h 792g 898g

13 107h 119h 146h 166h 189h 216h 246h 261h 262h 290g 325g 512i 531h 574g

14 83g 93g 104h 115h 127g 141g 171h 193h 218h 245h 260h 261g 290g 322g 357g 397g

15 64g 72g 80g 90g 101g 113g 124g 136g 149g 164g 197h 221h 246h 259h 265g 291g
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q=5

k\m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 31t 156t 781t 3906t

3 6c 26c 66c 186c 675c 1715c 4700c

4 6t 12e 27e 44e 78e 137e 138h 167g 285g 625h 831g 1421g 3125h 4152g 7099g

5 6t 10t 21e 33e 46e 68e 96h 124h 130h 156g 233g 624h 625h 775g

6 6t 10t 14e 27e 33e 44h 67h 102h 130h 131h 344h 515h

7 6t 10t 12t 25e 31u 50u 57h 79h 110h 131h

8 6t 10t 12t 16t 18t 20t 22g 29g 39h 52h 69h

9 6t 10t 12t 16t 18t 20t 21t 24g 30g 39g

10 6t 10t 12t 16t 18t 20t 21t 22a 26g

11 6t 10t 12t 16t 18t 20t 21t 22a

12 6t 10t 12t 16t 18t 20t 21t

13 6t 10t 12t 16t 18t 20t

14 6t 10t 12t 16t 18t

15 6t 10t 12t 16t

k\m 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

5 1158g 3124h 3125h 3868g 5784g 8648g

6 627h 628h 1727h 2584h 3127h 3128h 3129h 3133u 3877g 5348g 7378g

7 132h 163g 404h 559h 627h 628h 629h 2033h 2805h 3127h 3128h 3129h 3133u 4002g 5233g 6842g

8 90h 119h 132h 136g 171g 214g 464h 608h 627h 628h 668g 840g 2335h 3055h 3127h 3128h

9 50h 63h 79h 102h 129h 132h 148g 180g 219g 267g 524h 626h 627h 628h 723g 883g

10 32g 39g 49g 60h 75h 92h 113h 131h 134g 159g 190g 226g 269g 476h 583h 626h

11 23a 27g 33g 40g 49g 59g 71h 86h 103h 125h 132h 146g 171g 200g 312i 373h

12 22a 23a 26a 29g 35g 41g 49g 58g 69g 82h 97h 115h 132h 138g 159g 183g

13 21t 22a 23a 26a 27a 32a 37g 43g 50g 58g 68g 80g 93h 108h 126h 133h

14 20t 21t 22a 23a 26a 27a 32a 33g 38g 44g 51g 59g 68g 78g 90g 104h

15 18t 20t 21t 22a 23a 26a 27a 32a 36a 40g 46g 52g 60g 68g 78g

k\m 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

8 3129h 3326g 4186g 5267g 6627g 8340g

9 1079g 2636h 3126h 3127h 3128h 3129h 3600g 4401g 5381g 6580g 8045g 9837g

10 627h 652g 779g 931g 1112g 2400h 2936h 3126h 3127h 3128h 3244g 3879g 4637g 5545g 6629g 7927g

11 448h 536h 629h 630h 631h 712g 1562i 1579h 1889h 2260h 2704h 3130h 3131h 3132h 3133h 3543g

12 211g 243g 366h 430h 507h 596h 629h 630h 668g 772g 893g 1576h 1852h 2177h 2558h 3006h

13 150g 171g 195g 222g 253g 288g 420h 488h 565h 628h 629h 638g 728g 832g 951g 1086g

14 120h 132h 145g 163g 183g 207g 233g 263g 297g 335g 476h 545h 624h 628h 629h 698g

15 89g 101g 115h 131h 141g 157g 175g 196g 219g 245g 274g 306g 342g 469h 531h 602h
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