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1 Introduction

(t,m, s)—nets were defined by Niederreiter [17] in the context of quasi-Monte
Carlo methods of numerical integration. Niederreiter pointed out close con-
nections to certain combinatorial and algebraic structures. This was made
precise in the work of Lawrence, Mullen and Schmid [11, 15, 24]. These
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authors introduce a large class of finite combinatorial structures, which we
will call ordered orthogonal arrays OOA. These OOA contain orthogo-
nal arrays as a subclass. (t,m,s),-nets (that is, (t,m,s)-nets in base ¢ as
in the original Definition 2.2 in [17]) are equivalent to another parametric
subclass of OOA. Loosely speaking a (t,m, s),-net is linear if it is defined
over the field IFj, with ¢ elements. The duality between linear codes and lin-
ear orthogonal arrays carries over to the more general setting of linear OOA
(see [14] or [20]). Here OOA generalize orthogonal arrays (dual codes). The
weight function generalizing Hamming weight was first described by Nieder-
reiter in [16, 18]. It was systematically exploited by Rosenbloom-Tsfasman
in [23]. We use the term NRT-space for the corresponding metric space. A
description is in Section 2.

Our main results are generalizations of coding-theoretic construction tech-
niques from Hamming space to NRT-space, most notably concatenation
(equivalently: Kronecker products), the (u,u + v)-construction and the
Gilbert-Varshamov bound.

Let k = m—t denote the strength of a net. If a linear (¢, m, s),-net exists,
where m < s, then a linear code [s,s — m, k + 1], exists. From this point
of view it is a basic problem (the problem of net-embeddability) to decide
when a code [s, s —m, k+1], can be completed to a linear (m — k, m, s),-net.
More generally we ask when a linear OOA with certain parameters can be
embedded in a larger OOA. We speak of a theorem of Gilbert-Varshamov
type if the existence of the larger OOA can be guaranteed whenever the
parameters satisfy a certain numerical condition. In the final section we
apply our theoretical construction techniques as well as computer-generated
net embeddings of error-correcting codes to improve upon net-parameters for
nets of moderate strength and dimension defined over small fields.

2 Linear nets and linear ordered orthogonal
arrays

A (t,m, s)-net is a subset of Euclidean s—space. We mentioned in the intro-
duction that (¢, m, s)-nets can equivalently be described by finite geometrical
objects. More precisely (t,m, s)-nets are equivalent to a subclass of ordered
orthogonal arrays. For our purposes this description is more natural. We
use it as a definition. Moreover we concentrate on the linear case.



Definition 1. Let Q = QT be a set of Ts elements partitioned into s
blocks B;,i = 1,2...,s, where B; = {W1)>~~ wT } FEach block carries a

total ordering:

( ) (i)

< wy @)

C<wy

This gives ) the structure of a partially ordered set, the union of s totally
ordered sets of T' points each. We consider ) as a basis of a T's— dimensional
vector space ZFII(T’S). An ideal in §2 is a set of elements closed under predeces-
sors. An antiideal is a subset closed under followers. Observe that antiideals
are precisely the complements of ideals.

We visualize elements x = (xgz)) € Fq(T’S),Z' =1,...,87=1,...,T either
as strings of length T's, divided in s segments (the blocks) of length T" each,
or as matrices with T' rows and s columns. Refer to these representations as
vector notation and matrix notation, respectively. The interpretation of
T € IF T5) as a point in the s—dimensional unit cube is obtained by reading
the 3: ) for fixed i as the T first digits of the g—ary expansion of a real number

0/0f1]1

between 0 and 1. As an example, the point |1 | 1| 1|0 |in ]F2(3’4) is mapped
11001

to the point (2 25 }l, %, g) € [0,1)%. This also motivates the hierarchical ordering

inside the blocks.
We introduce some more terminology, which will be helpful in describing
the basic parameters of NRT-space.

Definition 2. We refer to coordinate positions of ]Fq(T’S) as cells. They
are in obvious bijection with the elements of ). The breadth b = b(z) of
a vector x € Fq(T’S) 1s the number of blocks B;,i = 1,2,...,s where x has
a nonzero entry. The ideal K = K(x) generated by x is the smallest ideal
containing the support of x. The breadth of an ideal K is the number of blocks
it intersects nontrivially. Let n = |K| be the size of K. The type m = 7(K)
15 the partition n, where the multiplicity f; of © as a part of ® is the number
of blocks, which intersect K in i points. The breadth b(m) of a partition is

the number of its nonzero parts. If m = w(K(z)), then b(m) = b(x).

Definition 3 (NRT-metric). Let x € F\™") The weight of z is

i=1



The distance p(x,y) is defined as p(x,y) = p(x—y). The minimum weight

)

(=minimum distance) of a subspace C C ]Fq(T’S s the minimum among the

weights of its nonzero members

We may visualize the weight p(z) as follows: in each block let the leading
zeroes evaporate. The number of remaining cells is p(x). It is clear that p is
a metric. Also, T's — p(z,y) is the size of the maximal ideal on which z and
y agree.

Definition 4. Let Sl(T’s) be the number of vectors of weight | in Fq(T’s) and
v =S ST the wolume of a ball of radius | in Iy,

Proposition 1. We have

(Tys) _ § _ 1)yl
Sl Zﬂ.:(fTW"ath_b)(q )q ’

where the sum is over all partitions © of | of depth < T, and b = b(n), f; =
fi(m).

Proof. Sl(T’s) counts the vectors of Fq(T’S), whose support generates an ideal
of size . The type of such an ideal K is a partition 7 as above. The number
of vectors generating a fixed K of breadth b clearly is (¢ — 1)°¢'~°. It remains
to count the ideals K with a given type 7. This number is

G0 C )= )
fr)\ fr-1 ) S fry.. ., fi,s—=b)"

We now define the objects we are primarily interested in.

Definition 5. A linear subspace (code) C C ]Fq(T’s) has strength k = k(C)
if k is maximal such that the projection from C to any ideal of size k s
surjective. We also call such a subspace an ordered orthogonal array
OOA, which is q—linear, has length s, depth T, dimension m = dim(C)
and strength k.

A linear (m — k,m, s),-net is equivalent to an m—dimensional code C C
]Fq(k’s) of strength k. Observe also that linear OOA of depth 1 are precisely
linear orthogonal arrays, in other words an m—dimensional code in ]Fq(l’s) of

strength & is the dual (with respect to the ordinary dot product) of a code
(s, s —m, k + 1],



Definition 6. Define a symmetric bilinear form on ]F;T’S) by

() =D 2y 2Py 42y
i=1

The dual C* is defined with respect to this scalar product.

Observe that Fq(l’s) is the usual Hamming space, with its metric, the dot
product and the corresponding notion of duality. Generalizing the notion of
Hamming space we may call Fq(T’s) with the NRT-metric and the correspond-
ing notion of strength the NRT-space. It is an important albeit elementary
observation that the duality (in Hamming space) between strength and min-
imum distance can be extended to our setting (see [14] or [20]).

Theorem 1. Let C C F\" be a linear subspace (code). Then
p(CH) = k(C) + 1.

We are led to the natural problem of generalizing coding-theoretic bounds
and constructions from Hamming space to NRT-space.

3 Trace codes

Theorem 2. Let C C F;TT’S) of dimension m and strength k. We can con-

struct C C Fq(T’TS) of dimension rm and strength k.

Proof. Let {b1,...,b,} be a basis of F' = IF» | IF,. We describe an
F,—isomorphism ": C — C as follows: Let tr : F — IF, be the trace and
x € C. The entry of Z in coordinate (i,a), where 1 < i < 5,1 < a < r and
§i,a)
as the kernel is trivial. In particular dim(C) = mr. It is also obvious that C
still has strength k. m

depth jis ;" = tr(xg-i)ba). It is obvious that we have an JF,,— isomorphism

The special case of nets was proved in [22].

4 Concatenation

The following construction may be seen as a concatenation construction or
as a Kronecker product for linear codes in NRT-space. A different Kronecker
product construction is in [21].



Theorem 3. Let C; C Fé?l’sl) of dimension m and Cy C Fq(T2’32) of dimen-

sion r. Let o : Flyr — Cy be an IFy—isomorphism. Define the concatenation
Cy0C = a(Cy) C F%2) 4 follows (in matriz notation): each x € Cy
yields a(x) € Co0Cy by applying « to each entry of x. Then dim(Cy0Cy) = mr
and k(Cy 0 Cy) > min{k(Cy), k(C2)}.

Proof. As the elements of Cy 0 C; are in bijection with those of C;, the state-
ment concerning the dimension is obvious. Let k& = min{k(C;), k(C3)}. Con-
sider an ideal K of size k in Q(T172:5152)  The natural projection K to Q1)
is an ideal of size < k. We can therefore find = € C; such that a(x) has
arbitrarily chosen entries from Cy in the positions of this ideal. For each
(i1,71) € K the intersection of K with the corresponding Q(72:%2) is itself an
ideal, clearly of size < k. The claim follows. m

The special cases of Theorem 3 when either C; or C5 is a net and the other
isan OA (Ty =1or T} = 1) is in [22].

5 The (u,u + v)-construction

Theorem 4. Fori = 1,2 let C; C Fq(T’Si) be linear OOA of dimension m;

(T,s1+s2
Fq

and strength k;, where s1 < so. We can construct C C ) of dimension

my + may and strength min{ ks, 2k; + 1}.

Proof. This is a direct generalization of the famous (u,u + v)-construction
in coding theory, which seems to go back to [26]. Consider the duals Ci.
These have dimension T's; — m; and distance k; + 1. We apply the (u,u +
v)-construction to Ci-. Our C will be obtained by dualizing (back). More

precisely let C; = (Ci(l), C’i@), . ,C’i(si)) be a generic element of C;,7 = 1, 2.
We define C* as the image of the (u,u + v)-mapping

u:Ci ®Cy — Fq(T’SlJrSQ)
given by
u(Cr, Co) = (CV, OV + P, CpD, OofY w of oYL o),

It is obvious that u is [F,-linear and injective. In particular dim(Ct) =
(T'sy —mq) 4+ (T'sg—mg) = T(s1+ s2) — (M1 +my), hence dim(C) = my + mo.
In order to find the strength of C we have to determine the distance of C*.
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Let CQ = O, Cl 7é 0. Then p(Cl,()) = 2[)(01) 2 2(/{?1 + 1) Let Cg 7é 0. For
each j = 1,2,...,s; the weight of the pair of columns (CY,CY + C{) is
at least the weight of the single column Cz(j ). Tt follows p(Cy,Cy) > ko + 1 if
CQ 75 0. m

Let ky = 2k1+ 1. In order to obtain a net as result, we must have T' = k.
This means that Cy is a (t9, Mo, s2),-net, ke = mo — to, whereas C; has depth
T = ky > ki and strength k;. The effective depth of C; is therefore ki, and C;
is obtained from a net of strength k; by adding meaningless rows. We have
seen the following;:

Corollary 1. Assume ko < 2k; + 1 and there exist linear (t;,my, $1),- and
(ta, ma, S2)4-nets, where k; = m; —t; and s; < sy. Then we can construct a
linear (mq + ta, My + Mo, 51 + s3),-net.

An application of Corollary 1 to nets (16,23,127)s and (2,5, 15), yields
a (21,28,142)y-net. As a ternary example we obtain an (11,22,23)s-net
from a (4,15,12)3-net and a (2,7,11)3-net. A different generalization of the
(u, u + v)-construction is attempted in [20].

As an example start from (6, 17, 10), and apply Corollary 1 with (3,8, 10),
as second ingredient. The result is a (14,25,20)s-net. More examples will
show up in the last section. Just as in coding theory, it is possible to apply
Corollary 1 in a recursive fashion.

The (u,u + v)-construction can be generalized from the linear case to
not necessarily linear ordered orthogonal arrays. The following definition
generalizes Definition 5.

Definition 7. Let A be an alphabet of size | A| = q. A multisubset C C AT>)
of size ¢ has strength k = k(C) if k is mazximal such that for every ideal K
of size k and every k-tuple of entries in K precisely ¢ elements of C have
the prescribed projection to K. We call C an ordered orthogonal array
OOA of length s, depth T, dimension m and strength k.

Observe that in the nonlinear case the dimension m need not be integer.

Theorem 5. Let A be an alphabet of size |A| = q. For i = 1,2 let C; C
ATs0) of dimension m; and strength k;, where s; < sy. We can construct
C C ATs1%52) of dimension my + mgy and strength k = min{ky, 2k, + 1}.



Proof. We write the elements of AT*) as T's-tuples with s sections of length
T (this is the vector notation mentioned in Section 2). For every pair u,v,
where u € Cy and v € Cy, we define a row in AT*1752) by r(u,v) = (u, u+v).
Here we have chosen a structure of an abelian group on A. The addition in
u~+v is componentwise. The last so — s blocks of u have been removed before
performing the addition. Let the array C consist of all these rows r(u,v). We
have to show that C has strength > k.

Denote the cells of AT1+52) by (L, 4, 5), where i < s5,j < T (these form
the left part L) and (R,i,7), where i < s1,j < T (the right part R). Let
K be an ideal of size k. Let C(K) = {(7,5)|(R,4,j) € K and (L,i,j) € K}
and ¢ = |C(K)|. Let an arbitrary k-tuple be prescribed on the cells from
K. The projection of u to the cells from K N L are prescribed. Let x be a
tuple on (R, C(K)) and U, the set of elements u € Cy having the prescribed
projection on K N L and projecting to  on (R, C(K)). Let further V, be
the set of elements v € C; such that v + v has the prescribed projection on
(R,C(K)). For every v € V,, let U, , consist of those u € U, such that u+ v
has the prescribed projection on (K N R) \ (R, C(K)). The pairs (u,v) such
that r(u,v) has the required projection on K is then

U U Wew {0}).

T ’UEV%

Observe that ¢ < kq as 2¢ < k. We are done. m

It follows that Corollary 1 generalizes from the linear case to arbitrary
nets.

6 The finite Gilbert-Varshamov bounds for
OOA

Let a code C C ]Fq(T_l’s) of dimension m and strength k& be given. It can
be represented as follows: let a(r),r = 1,...m be a basis of C. Write the
a(r) as rows of a matrix A. The section corresponding to block B; is a¥) =
(agi), e ,agfll), where aﬁi) € F.

We want to find vectors agf), which complement C to an m-dimensional

code in IFq(T’S) of strength k. It can be assumed that ag,f),i < s have been
found already. Our counting condition must be strong enough to guarantee
the existence of agf ),



Each ideal K C Q== of size | < k — T yields a condition. The number
of candidates for agf) excluded by K is g7 ! times the number of vectors in

Fq(T’S_l) whose support generates /. We obtain the following:

Theorem 6. Let C C ]Fq(T_l’s) of dimension m and strength > k be given.
Assume
T,S*l m—
Vk(—T ) g T+

equivalently

_ s—1 —_—
> Y-, ) <

I<k-T =

where the sum is over all partitions of | of depth < T, and b is the breadth of
. Then there is a code D C ]Fq(T’S) of dimension m and strength > k, which
projects to C.

We mention that Theorem 6 generalizes the strengthened Gilbert-Varshamov
bound ([13], p. 34, Theorem 2 of [1]) from Hamming space to NRT-space. It
is stronger than the generalization of the ordinary Gilbert-Varshamov bound
obtained in [23]. Theorem 6 has the following obvious corollary:

Theorem 7. Assume Vk(f’;*l) < ¢ T+ holds for T'=1,2,...,k — 1. Then

there is a linear (m—k, m, s),-net, equivalently a code C C Fq(k’s) of dimension
m and strength > k.

7 Net-embeddable error-correcting codes

Definition 8. Let C be a linear code [s,s — m, k + 1], (equivalently: C+ C

Fq(l’s) has dimension m and strength > k). We call C net-embeddable if
there is a linear (m — k,m, s),-net projecting to C*.

Recall that we identify linear nets with the corresponding linear subspaces
of IFq(k’s). Net-embeddability is guaranteed if Theorem 6 can be applied recur-
sively, for T'= 2, ..., k. In this section we apply our method in the following

form:
Theorem 8. Assume a linear code [s,s — m, k + 1], exists and Vk(f’;*l) <
q" T holds for T =2,...,k — 1. Then there is an (m — k,m, s),-net.
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The following lemma simplifies the comparison between the corresponding
conditions.

Lemma 1. Let V u(rn) = V5™ be the volume of a ball of radius r in Ham-
ming space F If > 2q 17“ + 5 —L- then

Vo(r+1,n) > ¢Vy(r,n).

Proof. As V,(r+1,n) =V, (r,n) + ( " )(g—1)"*! the claim is equivalent to
Vy(ryn) < (¢ —1) (r+1) We have V(T n) = Vy(r—1,n)+ (")(¢ —1)". By
induction we have V,(r — 1,n) < (¢ — 1)"* (7). It suffices to show

a-v () ra-v (D <a-v(, 1),

equivalently (:)q < (ril) (¢ —1). We have

(rL)/(ZL) = (n—7)/(r +1).

Our claim is therefore ¢(r+1) < (¢—1)(n—r), equivalently n > 2=ty +5
n

It is easy to see that for strength & < 3 net-embeddability is always
satisfied. In the case of strength 3 we are given a code [s,s — m,4],. Geo-
metrically this is an s—cap in projective space PG(m —1,q). Depth 2 can be
reached provided \/1(2’5_1) =1+ (s—1)(¢g—1) < ¢ '. The depth 3 condition
is then automatically satisfied. We conclude that each code [s,s — m, 4],
is net-embeddable provided s < 1+ (¢™ ! — 1)/(¢ — 1). This has been
proved in [24]. The first non-embeddable codes occur in this case when
q = 2 (the extended binary Hamming code is non-embeddable) and in char-
acteristic 2 when m = 3. The best binary strength 3 net parameters are
(m—3,m,2m"1 —1),.

For strength 4 the depth 2 condition is strongest. We conclude that a
linear code [s,s — m,5], is net-embeddable provided ‘/2(2’371) < ¢™ ' As
V2D = V(2,5 — 1)+ q(g — 1)(s — 1) we arrive at a statement first proved
in [25]. The present paper grew out of an attempt to generalize this result.
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7.1 Strength 5

Again the depth 2 condition is dominating. This implies that every linear
code [s, s—m, 6],, which satisfies V,(3, s—1)+q(q—1)(s—1)V,(1,5-2) < ¢™*
is net-embeddable.

7.2 Strength 6

It follows from Lemma 1 that the condition for depth 3 is weaker than the
depth 2 condition provided s > 12. The conditions for larger depths are
weaker yet. This implies that each linear code [s,s —m,7],, s > 12 which
satisfies V(4,5 — 1) + q(qg — 1)(s — 1)Vy(2,s —2) + ¢*(¢ — 1)*(°,") < ¢" ' is
net-embeddable.

8 Net parameters

We present tables of net parameters (m — k,m, s),. For ¢ = 2,3,4,5 we list
k,m,s. Observe that in case s > m the underlying error-correcting code has
parameters [s, s —m, k + 1],. As a starting point we used the tables in [5] for
q = 2,3,5. Label t refers to surviving entries from these tables. In some cases
when there was a choice we replaced label ¢ by one of the constructions below.
Net parameters from [22, 19] are labelled a and b, respectively. The values for
strength 3 in the non-binary case follow from cap constructions, see [9]. The
label used for nets obtained from embeddings of caps is c. The caps leading to
values (6,9,1216)3 and (8, 11,6464 )3 are constructed in [7]. Many values for
strength k& = 4 are derived from the families described in [2, 8]. More families
of binary nets of moderate strengths based on cyclic codes will be constructed
in a forthcoming publication. The corresponding table entries carry the sub-
script f. The nets with subscript e are computer-constructions obtained by
the second author. When s > m starting point is an error-correcting code.
Subscript u indicates an application of the (u,u + v)-construction. When
s < m Theorem 7 (pure GV) is applied. The corresponding subscript is g. In
case s > m typically we start from a code parameter given in [3] and apply
Theorem 8 to prove that it can be embedded in a net. The corresponding
entries are marked h.

A class of interesting constacyclic quaternary codes with d = 5 were
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constructed in [10, 6]. We use parameters
85,77, 5], [171,162, 5], [341,331,5]s, [683,672,5]s, [1365,1353, 5],

2731, 2718, 5]4, [5461,5447,5]4, [10923,10908, 5],.

In some cases, when no better construction seemed available, we used The-
orem 7 (subscript g) also when s > m. Some good nets can be derived from
Theorem 6 starting from C C ]Fq(T_l’S) of strength k for T' > 2. All our ex-
amples have T' = 3. These entries are labelled i. The depth 2 codes C are
derived from linear OA of strength k£ and length > 2s in the most obvious
way, by identifying 2s coordinates of the space containing the OA with the
coordinates of Q(>%). The codes which we used as ingredients can either be
obtained from the data base [3] or from primitive BCH-codes. As an ex-
ample, a (12,16,3125)5-net is based on a [3125,3109, 5]5-code, an extended
primitive BCH-code.

While we focused attention on linear nets, the tables contain also param-
eters of nonlinear nets. The only surviving parameters based on nonlinear
nets are Mark Lawrence’s (5,21,516)y and (5,25,2503)s from [12]. They
carry subscript L. Finally, we leave a blank for values (k,m) in the tables
whenever either we cannot construct a net of length s exceeding the entry in
cell (k,m — 1) or when we have reached a length of several thousand for a
dimension m’ < m already.

Notation in tables

indices | explanation

t tables from [5]
Niederreiter-Xing [22]
Niederreiter [19]
embedding of caps, see [9]
computer embeddings
Families from [2, §]
Theorem 7
code embedding Theorem 8
Theorem 6
(u, u + v)-construction
M. Lawrence’s nonlinear nets

He - 50 o0 60 T
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q=2

[F\m][3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |

2 [[7¢ 15; 31; 63: 127; 255; b511; 1023;

3 [|3: 7+ 15; 31; 63; 127; 255; bl11; 1023; 2047; 4095; 8191;

4 3t b:t 8 11y 17y 23. 32, 47. 655 81, 128, 151, 257 510

5 3t 5t 7¢ 10. 14. 20. 26c 36c 45. 69 77c 1295 140. 257

6 3; 5 6; 9; 11; 15, 21, 23, 26, 36, 42, 48, 64.

7 3t b5: 6 74 11; 13 16  20. 23. 28 34, 4l.

8 3; B¢ 64 T 9; 11, 14¢; 16 19. 22. 26,

9 3; 5¢ 6¢ 74 8 10, 12, 14. 17; 20.

10 3; 5y 6; 74 8¢ 9, 11. 13. 15,

11 3¢ 5¢ 6+ T 8¢ 9; 10y 12,

12 3; 5y 6¢ T+ 8; 9; 10;

13 3; 5¢ 6¢ T+ 8; 9y

14 3; 5¢ 6¢ T+ 8;

15 3¢ 5¢ 6¢ Tt
[F\m] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
4 [[513; 1025; 20467 20497 4097 8190; 8193

5 513; 516;, 1025 20497 20537, 4097 8193

6 72, 79. 127, 130, 137, 164, 196, 511 1023 2047
7 47, B8, 64 127 133; 137; 142, 511y 514, 518, 5264
8 30c 35. 39 42, 47, b4y, 64; 69, 78, 89, 128; 132; 133;
9 23. 260 29 34, 37, 40, 46, 60; 68; 71; 84; 100; 113;
10 || 17 20: 23 244 25¢ 28;, 31; 33, 35, 40, 43, 47, 52, 574
11 || 14. 16, 18. 20, 22, 244 28, 30, 33; 36, 37, 40, 45;
12 || 11 13. 15 164 18, 19, 21, 23, 28, 31, 33, 36,
13 || 10 11. 12 13¢ 144 16, 18, 19, 20, 22, 23, 28, 30,
14 9 10¢ 11 12¢ 13¢ 144 154 17, 18, 20, 21, 234 28,
15 8; 9y 10; 11¢ 12; 13¢ 14¢ 15¢ 17, 18, 20, 20, 22,
[F\m] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
6 2050, 2054, 2062, 8191¢

7 [[2047; 2050, 2054, 2062, 8191

] 145, 163;, 184;, 208, 234;, 263, 273;, 274;, 276, 277, 294, 324, 357, 394, 435, 480,
9 128; 134, 135; 137, 152, 169, 187, 208, 230; 255, 282, 285, 286, 287; 289,
10 64; 69, 76, 84 05,  128; 132; 136; 146, 161, 176, 193, 211, 231, 253,
11 50; 62;  68; 71; 75; 91, 100; 110; 121; 122, 133, 144; 156, 170y
12 39, 42, 45, 49, 534 584 62, 67, 734 178, 85, 91y 99, 106, 115, 124,
13 33, 36; 38, 41, 444 47, 51, b54g 64; 68; Tl; T2 77y 835 895 964
14 30, 324 354 38; 40, 43, 46, 49, 52, 56, 60, 64, 68, 724 Tig
15 23, 28, 30 32,4 34y 37, 40, 43; 45, 48, b5l, 54, 574 61, 654
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q=3

[f\m] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ]

2 [[13: 40 121; 364; 1093;

3 4. 10. 20. 56, 112, 248, 532. 1216, 2744. 6464,

4 4, 8 14, 265 41y 80y 121y 242y 3655 728y 1093y 21865 3281; 65607 9841

5 4; 7¢ 11, 18. 28. 38. 77  95. 103. 104, 151, 219, 244; 245,

6 44 Tt 8 13 19 25,  33. 42 49, 65, 87, 1104

7 4, 74 8; 11 15 20, 26 34 41; 43; 51

8 4, 74 8 10; 14, 17. 22 254 32

9 44 74 8; 10; 12y 15, 16; 18, 21,

10 4y Tt 8; 10; 12 13; 14, 16,

11 4; T4 8; 10; 12; 13; 14, 16;

12 4; T 8; 10; 12; 13; 14;

13 44 T 8¢ 10¢ 12; 13¢

14 44 Tt 8 10 12¢

15 44 Tt 8¢ 104
[F\m] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
5 [[660; 730, 731, 1985, 2188, 2189, 5959, 6562; 6563; 6564; 6565, 6566; 6567, 7262, 9557,

6 || 120, 201, 244, 245, 246, 610, 729, 730, 731, 1836, 2187, 2188, 2189, 5514, 6561, 65625
7 64, 81, 121; 128, 160, 200, 364; 365; 390, 487, 1093; 1094; 1094; 1179, 3280; 3281;
8 37, 45, 54, 66, 80, 96, 117, 141, 170, 205, 246, 247, 364; 432, 520, 625,
9 25, 32, 35, 4l 49, 58, 68, 80, 95, 112, 131, 155, 182, 214, 245, 246,
10 || 19: 22; 25, 32 34, 40, 46, 565, 61, 71, 82, 95, 121; 127, 146, 169,
11 19; 204 23, 264 32 344 40, 44, 56y 574 654 T4, 85, 96, 1104
12 164 19; 21, 24; 27, 32, 344 40 434 56y, 614 69, 784
13 || 14 16 19; 20¢ 22; 244 28; 32 344 40, 434 56y 594
14 || 13 14 16, 19, 204 22; 244 254 28; 32, 354 40y 42, 56y
15 12; 13; 14, 16, 19; 204 22; 244 28; 294 32 354 40,
[K\m] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
6 [[6563;, 6564, 6565, 6566; 6862, 85484

7 |/ 3281, 3284, 3545, 4417, 5503, 6568, 6569, 6570, 6571, 6572, 6573, 6812, 8180, 9824,

8 733, 1093; 1094; 1306, 1569, 1885, 3280; 3281, 3284, 3288, 6567, 6568, 6569; 6570
9 247, 405, 475, 556, 6525, 7325, 733 796, 912, 1046, 1200, 1376, 1578, 1809,
10 || 194, 224, 364; 365; 365; 392, 451, 518, 573, 647, 731, 825, 932,
11 || 125, 142, 161, 183, 207, 235, 248, 249, 364, 400, 446, 497, 555,
12 88, 98, 111, 118, 127, 156, 175, 197, 220, 247, 248, 249, 273, 301, 333, 3674
13 664 734 824 91, 101, 112, 125, 139, 154, 171, 190, 211, 234, 250, 251, 263,
14 574 634 704 T7q 854 94, 104, 115, 125, 139, 153, 169, 186, 204, 225,
15 434 56y 624 684 T4g 824 894 98, 107, 117, 128, 139, 149; 168,
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q—=4

[f\m] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |

2 [[21; 85:; 341; 1365; 5461,

3 5. 17. 41. 126, 288. 756, 2110, 4938,

4 5, 10. 19, 32. 85, 171. 341. 683. 965, 1366, 3861, 5462,

5 5a 9, 16 26. 36c 64. 8l. 96, 154, 245, 258, 619, 983; 1026,

6 5a 9, 12, 18 26, 34 45, 65, 81, 89, 187, 257,

7 5a 9, 10, 15 20. 22, 30, 40, 53, 71, 94,

8 5a 9, 10, 13, 17, 20, 23, 29, 37, 47,

9 54 9. 10, 13, 15, 17 20, 21, 244 294

10 5a 9 10, 13, 15, 17, 20, 21,

11 5¢ 94 10, 13, 15, 17, 20, 214

12 54 9, 104 134 15, 174 204

13 54 9, 10, 13, 154 174

14 54 9, 10, 134 154

15 54 9, 10, 13,
[F\m [ 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
5 [[2479, 3937, 4098, 4099, 4103, 4119, 4278, 6046, 8549,

6 258;, 259, 753, 1025, 1026, 1027, 3020; 4097, 4098, 4099, 4103, 4114, 4696, 6195, 81744

7 111, 119, 219, 257, 258, 259; 325, 886; 1025, 1026; 1027; 1031, 3554; 4097; 4098; 4099,
8 60, 73, 85, 95, 112, 199, 252, 257, 258, 292, 355, 807, 1018, 1025, 1026, 1027,
9 36, 45, 55, 68, 84, 94, 128, 155, 190, 232, 260, 261, 512; 518, 632, 772,
10 26, 304 36, 44 52, 63, 76, 89, 101, 111, 155, 186, 222, 259, 260, 264,
11 26, 27, 3l4 374 43, 514 60, 71, 83, 98, 115, 125, 132, 185, 217,
12 21, 26 274 284 324 374 434 50, 584 68, 78, 874 98, 110, 1244
13 20 21, 260 274 29, 33, 38, 44, 504 574 664 755 86, 96y
14 17, 20, 21, 260 274 29, 33. 354 39, 444 504 574 654 734
15 15, 17, 20, 214 264 274 29, 33, 36, 40, 454 514 574
[K\m] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
7 [[4103, 4114, 5153, 6491, 8178,

8 || 1157, 3240, 4084, 4097, 4098, 4099, 4100, 4618, 5629, 6861, 8363,

9 942;, 1029;, 2048; 2048; 2085, 2543, 3101, 3781, 4102; 4103, 4104, 4105, 4326, 5143, 6116, 7272,
10 || 308, 535, 637, 758, 903, 1028, 1029, 1030, 2048; 2155, 4101, 4102, 4103y
11 || 254, 259, 260, 298, 341, 391, 649, 758, 885, 1027, 1028, 1176, 1350, 1550,
12 || 140, 187, 215, 248, 258, 259, 292, 331, 374, 424, 666, 766y 792, 898,
13 || 107, 119, 146, 166, 189, 216, 246, 261, 262, 290, 325, 512; 531, 5744
14 834 93, 104, 115, 127, 141, 171, 193, 218, 245, 260, 261, 290, 322, 357, 3974
15 644 724 80, 90, 101, 113, 124, 136, 149, 164, 197, 221, 2465, 259, 265, 2914
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q=>5

[F\m] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 [[31: 156; 781; 3906
3 6. 260 66, 186, 675, 1715, 4700,
4 6: 12, 27. 44. 78, 137. 138, 167, 285, 625, 831, 1421, 3125, 4152, 7099,
5 6¢ 10¢ 2l 33. 46. 68, 96, 124;, 130, 1565 233, 624;, 625, 17754
6 6¢ 10; 14, 27. 33, 44, 67, 102, 130, 131, 344, 5155,
7 6¢ 10¢ 12; 25, 31, 50, 57, 79, 110, 131,
8 6; 10, 12; 16; 18; 20 22, 29, 39, 52, 69
9 6¢ 10, 12y 16; 18 20; 214 24, 30, 394
10 6; 10y 12; 16; 18;  20; 21, 22, 264
11 6; 10; 12y 16; 18; 20; 21 22,
12 6; 10 12; 16; 18 20¢ 214
13 6: 10; 12 164 18 20¢
14 6¢ 10¢ 12; 164 18
15 6+ 10¢ 12¢ 16¢
[F\m ] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
5 [[1158, 3124; 3125, 3868, 5784, 8648,
6 627, 628, 1727, 2584; 3127, 3128, 3129; 3133, 3877, 5348, 7378,
7 132, 163, 404;, 559, 627, 628, 629, 2033, 2805, 3127, 3128, 3129, 3133, 4002, 5233, 6842,
8 90, 119, 1325, 1364 171, 214, 464; 608, 627, 628, 668, 840, 2335, 3055, 3127, 3128,
9 50, 63, 79, 102, 129, 132, 148, 180, 219, 267, 524; 626, 627, 628; 723, 8834
10 324 394 49, 60y, 75, 92, 113, 131, 134, 159, 190, 226, 269, 476, 583, 626
11 23, 27, 334 40, 49, 59, 71, 86, 103, 125, 132, 146, 171, 200, 312; 373,
12 22, 23, 26, 29, 354 414 49, 584 69, 82, 97, 115, 132, 138, 159, 183,
13 21 22, 23, 264 27 32, 374 434 504 584 684 80,4 93, 108, 126, 133,
14 20 21 22, 23, 26, 274 32, 334 38, 44, 514 594 684 784 90, 104
15 18; 204 214 22, 23, 26, 274 32, 364 404 464 524 604 684 784
[K\m] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
8 [[ 3129, 3326, 4186, 5267, 6627, 8340,
9 |/ 1079, 2636, 3126, 3127, 3128, 3129, 3600, 4401, 5381, 6580, 8045, 9837,
10 || 627, 652, 779, 931, 1112, 2400, 2936, 3126; 3127, 3128; 3244, 3879, 4637, 5545, 6629, 7927,
11 || 448, 536, 629, 630, 631, 712, 1562; 1579; 1889, 2260; 2704; 3130; 3131, 3132, 3133; 3543,
12 || 211, 243, 366, 430, 507, 596, 629, 630, 668, 772, 893, 1576, 1852, 2177, 2558; 3006y
13 || 150, 171, 195, 222, 253, 288, 420, 488; 565, 628, 629, 638, 728, 832, 951, 10864
14 || 120, 132, 145, 163, 183, 207, 233, 263, 297, 335, 476, 545, 624; 628, 629, 698,
15 89, 101, 115, 131, 141, 157, 175, 196, 219, 245, 274, 306, 342, 469, 531, 602
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