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Riassunto

Si costruiscono calotte di cardinalità 2q2+q+9 negli spazi di Galois PG(4, q)
4-dimensionali per ogni q = 2f > 4.

Abstract

We construct (2q2+q+9)-caps in projective 4-space PG(4, q) in characteristic
two for every q > 4.
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1 Introduction

A cap in PG(k − 1, q) is a set of points no three of which are collinear. If
we write the n points as columns of a matrix we obtain a (k, n)-matrix such
that every set of three columns is linearly independent, hence the generator
matrix of a linear orthogonal array of strength 3. This is a check matrix of
a linear code with minimum distance ≥ 4. It follows that a set of n points in
PG(k − 1, q), which form a cap, is equivalent to a q-ary linear code [n, n −
k, 4]q. Denote by m2(k, q) the maximum cardinality of a cap in PG(k, q). In
the binary case this is a trivial problem. In fact, choosing all nonzero k-tuples
as columns we obtain a binary (k, 2k−1)-matrix of strength 2 (meaning that
no two columns are linearly dependent), where the number of rows is clearly
maximal. The dual is a binary code [2k − 1, 2k − (k + 1), 3]2. Addition of a
parity-check bit yields [2k, 2k − (k + 1), 4]2. We conclude

m2(k, 2) = 2k.

We can and will assume q > 2 in the sequel. For dimensions ≤ 3 there is
no problem. Trivially m2(1, q) = 2. It is an easy exercise to show that the
solution of the homogeneous equation Z2 = XY form a set of q + 1 points
in PG(2, q) no three of which are collinear. This is maximal if q is odd. If q
is a power of 2, then each such oval on q + 1 points may be embedded in a
hyperoval of q + 2 points. In other words

m2(2, q) =
{

q + 1 if q is odd
q + 2 if q is even.

In projective dimension 3 the situation is just as clear:

m2(3, q) = q2 + 1 if q > 2.

(q2 + 1)-caps in PG(3, q) are known as ovoids. Just as in dimension 2 they
may be constructed as elliptic quadrics. We start in section 2 by describing
conic sections and elliptic quadrics in terms of quadratic field extensions
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(Theorem 2). Tallini [2] studied caps in PG(4, q) containing elliptic quadrics
in two hyperplanes. His results in the case when q > 2 is even may be
summarized as follows: A cap in PG(4, q) intersecting each of two different
hyperplanes in an elliptic quadric can have at most 2q2 + q + 5 points. Such
(necessarily complete) (2q2 + q + 5)-caps do in fact exist.
In section 3 we give a concrete description of (2q2 + q + 5)-caps satisfying
Tallini’s properties in PG(4, q), for every even q > 2. This description uses
the terminology of section 2. In section 4 we start from Tallini’s cap Q as
described in

section 3. There is a plane S intersecting Q in 6 points. We remove these
6 points from Q and add a set D of 10 different points of S to Q. Nine of
these ten points are on a conic section V (Q), the tenth point is the nucleus
of V (Q). The resulting set (Q \ S) ∪ D is a (2q2 + q + 9)-cap in PG(4, q),
thus proving the following:

Theorem 1
m2(4, q) ≥ 2q2 + q + 9 if q = 2f > 4.

For the state of the art and further references we refer to [1]. For calculations
in PG(3, q) we use homogeneous coordinates. Points are (x1 : x2 : x), where
x ∈ IFq2 . PG(4, q) is coordinatized in an analogous way: the points are
quadruples (x1 : x2 : x3 : x).

2 Ovals and ovoids

We start by giving a concrete description of the classical ovals and ovoids.

Theorem 2 Let q be a prime power. Consider IFq and its quadratic exten-
sion IFq2 . Fix an element a ∈ IF ∗

q .

1. The set of columns (1, b)t, where b ∈ IFq2 varies over the elements
satisfying bq+1 = a, has strength 3 (equivalently: this describes an oval
in the projective plane of order q).

2. The columns e2 = (0 : 1 : 0 : 0)t and (1 : a · uq+1 : u)t, where u varies
over IFq2 , form an ovoid in PG(3, q).
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Proof: 1. It is clear that no two of our columns are multiples of each other.
Assume

∑3
i=1 λi(1, bi) = 0. We know that the λi ∈ IFq are nonzero and the bi

are pairwise different. The first coordinate shows
∑

i λi = 0, hence

λ2
3 = λ2

1 + λ2
2 + 2λ1λ2.

The last set of coordinates shows −λ3b3 = λ1b1 + λ2b2. Raising this to the
(q + 1)th power we obtain

λ2
3a = (λ1a/b1 + λ2a/b2)(λ1b1 + λ2b2).

After removal of the common factor a this yields λ2
3 = λ2

1+λ2
2+λ1λ2(x+1/x),

where x = b1/b2 6= 1. Comparison with the expression of λ2
3 given above

yields 2 = x + 1/x. Multiply by x, collect all terms on one side. This yields
0 = x2 − 2x + 1 = (x− 1)2. We obtain the contradiction ζ1 = ζ2.
2. It is easy to see that e2 is not linearly dependent of any two of the
remaining columns. Assume

∑3
i=1 λi(1, auq+1

i , ui) = 0, where the ui are three
different elements of IFq2 . Clearly we can assume without restriction that
a = 1. We proceed as before, observing at first that the coefficients λi are
nonzero. The first coordinate shows −λ3 = λ1 + λ2, the second coordinate
shows

−λ3u
q+1
3 = λ1u

q+1
1 + λ2u

q+1
2 .

We start from the last coordinate. Raising the corresponding equation to the
(q + 1)th power yields

λ2
3u

q+1
3 = (λ1u

q
1 + λ2u

q
2)(λ1u1 + λ2u2) =

= λ2
1u

q+1
1 + λ2

2u
q+1
2 + λ1λ2(u1u

q
2 + u2u

q
1).

Comparison with the first two coordinates yields uq+1
1 + uq+1

2 = u1u
q
2 + u2u

q
1.

This last equation is equivalent to (u1 − u2)
q+1 = 0. We obtain the contra-

diction u1 = u2.

Corollary 1 The ovoids described in Theorem 2 can be decomposed into two
points and q − 1 disjoint ovals.

Proof: Consider the ovoid as described in part 2. of Theorem 2. We fix
the two points e2 and e1 = (1 : 0 : 0 : 0). For every α ∈ IF ∗

q the set
Qα = {(1 : aα : u) | uq+1 = α} is contained in the plane with equation
x2/x1 = aα and forms an oval.
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Lemma 1 Let q be a power of 2. The nucleus N of the oval given in Theo-
rem 2 is N = (1 : 0 : 0).

Proof: Assume vectors (1 : 0 : 0), (1 : b1) and (1 : b2) are linearly inde-
pendent. Then b2 = λ · b1, λ ∈ IFq. It follows 1 = λq+1 = λ2, hence λ = 1.
This yields b1 = b2.

3 Tallini’s caps

Definition 1 Let q > 2 be a power of 2. Choose z ∈ IFq \ IF4, put α =

1/
√

1 + z + 1/z. Define the point set

Q = Q1 ∪Q2 ∪ U1 ∪ U2 ∪R.

Here
Q1 = {(0 : 0 : 1 : 0)} ∪ {(1 : 1 : a : b) | bq+1 = a},

Q2 = {(0 : 1 : 1 : 0)} ∪ {(1 : c : c : d) | dq+1 = c},

U1 = {(1 : 0 : 1 : ζ) | ζq+1 = 1},U2 = {(1 : α : 1 : f) | f q+1 = α2},

and R = {(1 : r1 : 1 : 0), (1 : r2 : 1 : 0).

Theorem 3 Let q > 4 be a power of 2. Choose r1, r2 /∈ IF2 ∪ {α/(α + 1)}.
Then the point set Q of Definition 1 is a {2q2 + q + 5}-cap in PG(4, q).

Proof: We have Q1 ⊂ H1, where H1 is the solid with equation x1 = x2. It
follows from Theorem 2 that Q1 is an ovoid. Analogously, Q2 is an ovoid in
H2 = (x2 = x3). Let E = H1 ∩H2. Then C = Q1 ∩Q2 = Q1 ∩E = Q2 ∩E =
{(1 : 1 : 1 : ζ) | ζq+1 = 1}. It follows that Q1 ∪ Q2 is a cap and Q has
2q2 + q + 5 elements. All the points of Q not in H1 or H2 are in the solid H3

with equation x1 = x3. Our proof will naturally fall into two parts: We show
at first that Q∩H3 is a cap.
Q∩H3 is a cap: In this part of the proof we omit a redundant coordinate by
writing (1 : a : b) instead of (1 : a : 1 : b). We have Q∩H3 = C ∪U1 ∪U2 ∪R
(consisting of 3q − 1 points). We observe that each of C,U1,U2 is an oval,
these ovals live in different planes and do not share points with any line of
intersection between two such planes. It follows that a line containing more
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than two points of Q ∩ H3 cannot contain more than one point of each of
these ovals. Let l be a line containing at least 3 points of Q ∩H3. The last
coordinate section shows that l does not contain both points of R.
Assume point (1 : r1 : 0) ∈ l. We have an equation

(1, r1,0) = λ2(1, a1, b1) + λ3(1, a2, b2).

The first coordinate shows λ2 + λ3 = 1. The last coordinate yields, after

raising to power (q + 1), that bq+1
2 = bq+1

1 · λ2
2

λ2
3
. If bq+1

2 = bq+1
1 , then the

contradiction λ2 = λ3 would follow. It follows that we can choose without
restriction a1 = α and (1 : α : 1 : b1) ∈ U2, b

q+1
2 = 1 and a2 ∈ {0, 1}.

We obtain λ2 = 1/(α + 1), λ3 = α/(α + 1). The second coordinate shows
r1 = α/(α + 1) + a2λ3. If a2 = 1, then r1 = 0, contradiction. If a2 = 0. then
r1 = α/(α + 1), contradiction again.
It follows that l must pick one point from each of our three ovals. We must
therefore have an equation of the form

(1, 0, b1) = λ2(1, 1, b2) + λ3(1, α, b3),

where bq+1
1 = bq+1

2 = 1, bq+1
3 = α2. The first two coordinates show λ2 =

α/(α + 1), λ3 = 1/(α + 1). The last coordinate yields b3 = (α + 1)b1 + αb2.
Raising to power q + 1 yields α2 = 1 + α(α + 1)(x + 1/x), where x = b1/b2.
Multiply by x, reorder terms. We obtain x2 + (1 + 1/α)x + 1 = 0. By our
choice of α we have 1 + 1/α = z0 + 1/z0, where z0 =

√
z. The equation

above splits: (x + z0)(x + 1/z0) = 0. Assume x = z0. Then 1 = xq+1 = z2
0 . It

follows z = z0 = 1, hence α = 1, contradiction. In case x = 1/z0 the same
contradiction is obtained.
Main part of the proof: Let l be a line containing three points of Q. By what
we have shown above the only possibility is that each Hi \E contributes one
point of Q ∩ l. Put {Pi} = l ∩ Hi ⊂ Q. The first three coordinates show
that P1 = (0, 0, 1,0), P2 = (0, 1, 1,0) is impossible. Assume P1 = (0, 0, 1,0).
Then P2 = (1, a, a, b), P3 = (1, c, 1, d). The first two coordinates show c = a.
The last coordinate yields then d = b. As bq+1 = a, we have dq+1 = c. The
definition of Q∩H3 shows that c = 1, hence P3 ∈ E, contradiction.
The next case P2 = (0, 1, 1,0), P1 = (1, 1, a, b), P3 = (1, c, 1, d) leads to a
contradiction in a completely analogous way.
We are in the generic case

P1 = (1, 1, a1, b1), P2 = (1, a2, a2, b2), P3 = (1, c, 1, d).
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Assume
∑3

i=1 λiPi = 0. Recall that none of a1, a2, c equals 1. The first three
coordinates yield c(a1 + a2) = a1a2 + 1. We can choose λ3 = 1. Then λ1 =
(c + 1)/(a1 + 1), λ2 = (c + a1)/(a1 + 1).
Assume a1 = a2. Then a1a2 + 1 = 0. It follows a1 = a2 = 1, contradiction. It
follows

c = (a1a2 + 1)/(a1 + a2)

and consequently

c + 1 = (a1 + 1)(a2 + 1)/(a1 + a2), c + a1 = (a1 + 1)2/(a1 + a2).

Assume d = 0. Then (b1/b2) = (c + a1)/(c + 1). Raising to power q + 1
yields a1/a2 = (c + a1)

2/(c + 1)2 = (a2
1 + 1)/(a2

2 + 1). Solving this yields
(a1 + a2)(1 + a1a2) = 0. This shows c = 0, contradiction.
Assume now c = 0. We have a1a2 = 1, dq+1 = 1. The last coordinates show
(a1 + 1)d = b1 + a1b2. It follows

a2
1 + 1 = (a1/b1 + a1a2/b2)(b1 + a1b2) = x + a2

1/x,

where x = b1/b2. After multiplication by x and reordering we obtain 0 =
x2 + (a2

1 + 1)x + a2
1 = (x + 1)(x + a2

1). Case x = 1 leads to the contradiction
a1 = a2. We must have x = (b1/b2) = a2

1. Raising this to power q + 1 we
obtain a1/a2 = a4

1, or 1 = a2a
3
1 = a2

1, and hence the contradiction a1 = 1.
Only one case remains: c = α, dq+1 = α2. The last coordinates show (a1 +
a2)d = (a2 + 1)b1 + (a1 + 1)b2. Raise this to power q + 1 and simplify. We
obtain

1 + a2
1a

2
2 = ((a2 + 1)a1/b1 + (a1 + 1)a2/b2)((a2 + 1)b1 + (a1 + 1)b2) =

= a1(1 + a2
2) + a2(1 + a2

1) + a1(a1 + 1)(a2 + 1)b2/b1 + a2(a1 + 1)(a2 + 1)b1/b2.

After reordering we obtain (a1 + 1)(a2 + 1) as a common factor. Removal of
this nonzero factor leaves us with a1a2 + 1 = a1/x + a2x, where x = b1/b2.
After multiplation with x this equation factors: (x + a1)(x + 1/a2) = 0. It
follows that either x = a1 or x = 1/a2. In both cases we obtain a1a2 = 1,
which leads to the contradiction c = α = 0.
In order to be complete we describe a 41-cap in PG(4, 4) as well. In the
terminology of Definition 1 one should replace U2 by U ′

2 = {(0 : 1 : 0 : b) |
b5 = 1} and the two additional points Ri by R′

1 = (1 : ω : 1 : 0), R′
2 = (1 :

ω2 : 1 : 0). This yields a 41-cap Q1 ∪ Q2 ∪ U1 ∪ U ′
2 ∪ R′ in PG(4, 4). Here

IF4 = {0, 1, ω, ω2}.
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4 A new family of caps

We start from the cap Q ⊂ PG(4, q) for even q > 4 as described in Defini-
tion 1 and Theorem 3. It follows from [2] that Q is a complete cap. Let S
be the plane with equation x4 = x5 = 0. Our strategy will be to take away
the points of Q∩ S from Q and replace them by some other points in S.

Definition 2 Under the assumptions of Definition 1 define
the (2q2 +q−1)-cap Q′ = Q\(S∩Q). Then Q′ arises from Q by omitting

the points from R and the points (1 : 1 : 0 : 0), (0 : 0 : 1 : 0), (1 : 0 : 0 :
0), (0 : 1 : 1 : 0).

The following easily proved Lemma will be useful:

Lemma 2 Exchanging the first and third coordinates induces an involutory
automorphism on Q′.

We describe points P ∈ S, such that Q′ ∪ {P} is a cap.

Lemma 3 The following points P ∈ S have the property that Q′ ∪ {P} is a
cap:

1. e1 = (1 : 0 : 0 : 0) and e3 = (0 : 0 : 1 : 0).

2. (1 : x : 1 : 0), where x /∈ {0, 1, α/(α + 1)}.

3. (x : 1 : 0 : 0) and (0 : 1 : x : 0), where x /∈ {0, α + 1, (α + 1)/α}.

4. (x : 0 : 1 : 0), where x /∈ IF2.

5. (u : v : w : 0), where uvw 6= 0, u + v + w = 0.

Proof: Observe that none of the points in the statement of the Lemma is
in E. Let l be a line containing P and at least two points of Q′. Assume l is
contained in one of the Hi, i = 1, 2, 3. The existence of Q and the automor-
phism described in Lemma 2 show that this is not the case. It follows that
l must pick up its points Q1, Q2 ∈ Q′ from two different Hi. Cases 1. and 2.
are done because of the description of Q.
3. Without restriction P = (x : 1 : 0 : 0), where x /∈ {0, 1, α + 1, (α + 1)/α}.
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Assume first Q1 ∈ H1, Q2 ∈ H2. This shows that a matrix


x 1 1
1 1 a2

0 a1 a2

0 b1 b2

 is

singular, where bq+1
i = ai and ai /∈ IF2. Add x times the second row to the

first row. In the resulting matrix, there is only one nonzero entry in the first
column. We consider the second and third columns, where the entries in the
second row have been removed. These vectors must be scalar multiples of
each other. We will write s ∼ s′ to denote that vector s′ is a scalar multiple of
s. In our case we obtain (x+1, a1, b1) ∼ (a2x+1, a2, b2). The last coordinates
show (a1/b1) = (a2/b2), hence bq

1 = bq
2 and consequently b1 = b2, a1 = a2. The

first coordinate shows x + 1 = xa1 + 1. We obtain the contradiction a1 = 1.
We will use a similar procedure in all cases. Assume next Q1 ∈ H1, Q2 ∈ H3.

Our singular matrix is


x 1 1
1 1 c
0 a1 1
0 b1 d

 . We obtain (x+1, a1, b1) ∼ (cx+1, 1, d).

As a1 6= 0 we have b1 6= 0, consequently d 6= 0. The description of Q′ ∩ S \E
shows that we must have dq+1 = α2, c = α. The last coordinates show
b1 = a1d, hence a1 = a2

1α
2 and a1 = 1/α2. The first coordinate shows,

after solving for x, that x = (α + 1)/α.

Let finally Q1 ∈ H2, Q2 ∈ H3. Our matrix is


x 1 1
1 a c
0 a 1
0 b d

 , leading to

(ax + 1, a, b) ∼ (cx + 1, 1, d). We have c = α, dq+1 = α2. As before we
obtain a = 1/α2. The first coordinate yields (αx+1)/(x/α2 +1) = α2, which
leads to the contradiction x = α + 1. By symmetry we are done with 3.
4. We have P = (x, 0, 1,0). Assume first Q1 ∈ H1, Q2 ∈ H2. This shows

that a matrix


x 1 1
0 1 a2

1 a1 a2

0 b1 b2

 is singular, as usual. It follows (a1x+1, 1, b1) ∼

(a2x+1, a2, b2). The last coordinates show b2 = a2b1, hence a2 = a2
2a1 and con-

sequently a1a2 = 1. The first coordinate yields a2x+1 = a2(a1x+1) = x+a2.
This leads to the contradiction x = 1.
Because of the symmetry given in Lemma 2 the only case that remains to be
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considered is Q1 ∈ H1, Q2 ∈ H3. Our singular matrix is


x 1 1
0 1 c
1 a1 1
0 b1 d

 . We

obtain (a1x + 1, 1, b1) ∼ (x + 1, c, d). In particular c 6= 0, hence c = α. The
last coordinates yield d = αb1, hence α2 = α2a1 and a1 = 1, contradiction.
5. We can choose notation such that P = (1 : v : w : 0), where v + w =
1, vw 6= 0. Assume first Q1 ∈ H1, Q2 ∈ H2. The singular matrix is matrix

1 1 1
v 1 a2

w a1 a2

0 b1 b2

 . Replace the third row by the sum of the first three rows,

then add v times the first row to the second. This leads to (v + 1, a1, b1) ∼
(v + a2, 1, b2). When the usual procedure is applied to the later coordinates
be obtain b1 = a1b2, hence a1 = a2

1a2 and a1a2 = 1. The first coordinate gives
v + 1 = a1(v + a2) = a1v + 1. We obtain the contradiction a1 = 1.
By symmetry it suffices to consider one remaining case: Q1 ∈ H1, Q2 ∈ H3.

Our singular matrix is


1 1 1
v 1 c
w a1 1
0 b1 d

 . The same procedure as in the preced-

ing case leads to (v + 1, a1, b1) ∼ (v + c, c, d). As c 6= 0 we have c = α. The
last two coordinate sections show (d/b1) = (c/a1), hence α2/a1 = α2/a2

1 and
thus a1 = 1, contradiction.
Denote by P the set of points given in Lemma 3. If D ⊆ P is an arc in the
projective plane S, then Q′ ∪D is a cap. In order to obtain a large arc D we
use quadratic forms. Recall from geometric algebra that the quadratic form

Q(X1, X2, X3) = a1X
2
1 + a2X

2
2 + a3X

2
2 + a12X1X2 + a13X1X3 + a23X2X3

is non-degenerate if and only if

a1a
2
23 + a2a

2
13 + a3a

2
12 + a12 · a13 · a23 6= 0.

If this is satisfied, then its singular points form an oval. Together with its
nucleus (a23 : a13 : a12) a hyperoval is obtained (q + 2 points, no three on a
line). We choose some a ∈ IF ∗

q and consider

Q(x, y, z) = x2 + ay2 + z2 + axy + (a + 1/a)xz + ayz.
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This will be non-degenerate if and only a /∈ IF2. Observe that interchanging
the first and third coordinates is an automorphism of Q. The nucleus is
N = (a : a + 1/a : a) = (a2 : a2 + 1 : a2). We have N ∈ P if and only if
(a2 + 1)/a2 6= α/(α + 1), which is equivalent to a 6=

√
α + 1.

The following are points in V (Q) ∩ P :

(a : 0 : 1), (1 : 0, a), (a : a + 1 : 1), (1 : a + 1 : a).

We have (1 : 1 + 1/a : 1) = (a : a + 1 : a) ∈ V (Q). It is in P if and only if
1 + 1/a 6= α/(α + 1), equivalently a 6= α + 1. We have (1 : y : 0) ∈ V (Q) if
and only if y2 + y + 1/a = 0. We assume therefore tr(1/a) = 0 and choose b
such that b2 + b = 1/a. We conclude that

(1 : b : 0), (1 : b + 1 : 0), (0 : b : 1) and (0 : b + 1 : 1)

belong to V (Q). Assume (1 : b : 0) = (1/b : 1 : 0) /∈ P . Then 1/b = α + 1
or 1/b = (α + 1)/α, equivalently b = 1/(α + 1) or b = α/(α + 1). It follows
1/a = b2+b = α/(α2+1). The remaining three points give the same condition,
of course. We have seen the following:

Theorem 4 Let q > 4 be a power of 2. Choose z ∈ IFq \ IF4, put α =

1/
√

1 + z + 1/z. Let further a ∈ IFq \ IF2 such that tr(1/a) = 0. Here tr :

IFq −→ IF2 is the absolute trace. Write 1/a = b2 + b. Moreover a has to be
chosen different from α + 1,

√
α + 1 and α + 1/α. Then the set

D = {(a : 0 : 1), (1 : 0 : a), (a : a + 1 : a), (a : a + 1 : 1), (1 : a + 1 : a),

(1 : b : 0), (1 : b + 1 : 0), (0 : b : 1), (0 : b + 1 : 1), (a2 : a2 + 1 : a2)}
is a 10-arc in PG(2, q). If we embed this plane in PG(4, q) such that x4 =
x5 = 0, then D complements the cap Q′ from Definition 2 to a (2q2 + q + 9)-
cap.

The conditions on α and a can always be satisfied. In fact, let α be chosen,
q = 2f . There are at least 2f−1 − 2 elements a /∈ IF2 such that tr(1/a) = 0.
As a has to satisfy only three more conditions and 2f−1 − 5 > 0 if f ≥ 4 we
are done in these cases. Remains case q = 8. We describe IF8 as an extension
of IF2 by IF8 = IF2(ε), where

1 + ε + ε5 = 1 + ε2 + ε3 = 1 + ε4 + ε6 = 0.
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Choose z = ε, hence α = 1/
√

1 + z + 1/z = ε2. We have
√

α+1 = ε5, α+1 =

ε3, α + 1/α = ε4. As tr(ε) = 1, tr(ε3) = 0, we can choose a = ε2 = α. This
concludes the proof of Theorem 1.
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