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1 What is a cap?

A cap in a projective or affine geometry over a finite field is a set of points no three of which
are collinear. The most natural question to ask is:

What is the maximum size of a cap in the given space?

This is also known as the packing problem. In this paper, m2(r,q) denotes the size of
the largest caps in PG(r,q).

2 Classical examples

If the underlying field is F2, the answer is easy: AG(n,2) is itself a cap of 2n points and it
forms up to projective equivalence the unique largest cap in PG(n,2).

Assume therefore we work in PG(n,q) or AG(n,q) for q > 2. The canonical models for
caps are quadrics of Witt index 1. They yield (q+1)-caps in AG(2,q) (and in PG(2,q)) and
obviously these ovals are maximal for odd q. In odd characteristic each oval in PG(2,q) is a
conic section (Segre [49,50]). This is not true in characteristic 2, where moreover each oval
O is embedded in a unique hyperoval O ∪{N}. Here N is the nucleus, the intersection of
all the tangents to O. A hyperoval is a (q+2)-cap and this is maximal. The hyperovals are
described by a special kind of permutation polynomials. This is an active line of research,
see the survey [38]. In PG(3,q) an elliptic quadric is a (q2 + 1)-cap. This is maximal for
all q > 2 (see Bose [13] and Qvist [47]). Its affine part is a q2-cap in AG(3,q) and this
is maximal. In characteristic 2 the Tits ovoids form another family of (q2 + 1)-caps in
PG(3,q), see [55]. They may be considered classical as they admit a family of classical
groups, the Suzuki groups 2B2(q) for q = 22m+1, as groups of automorphisms.
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3 Exceptional caps

For projective dimensions d > 3 and fields Fq,q > 2, the basic question seems to be hard
to answer. Only for some small dimensions and fields the answer is known. In those
cases, the corresponding maximal caps tend to be exotic, in particular more or less uniquely
determined and very symmetric.

The ternary case

In PG(4,3) and AG(4,3), the maximum is 20 (see Pellegrino [45]), with the 20-cap in
AG(4,3) (the Pellegrino cap) uniquely determined. In PG(5,3) and AG(5,3), the maxi-
mum is 56 and 45 respectively. In both cases, the caps are uniquely determined, the Hill cap
in PG(5,3) and the affine Hill cap (contained in the Hill cap) in AG(5,3). The unicity was
shown by Hill [36] in the projective, in [6, 25] in the affine case. The automorphism group
of the Hill cap is an extension of the simple group PSL(3,4) by a group of order 2. There
are numerous links to other exceptional mathematical structures, see Hill [37]. The points
of the elliptic quadric in PG(5,3) can be chosen to be the one-dimensional subspaces of F6

3
generated by the vectors of weights 3 or 6. This indicates how those 112 points can be split
into two halves each of which forms a cap (for details, see [6]). The automorphism group
of the Hill cap is a rank 3 permutation group on the points of the Hill cap, the stabilizer of
a point having orbits of lengths 1,10,45. The points of the long orbit form a copy of the
affine Hill cap whose automorphism group is the stabilizer PGL(2,9). The remaining 11
points form a block of the uniquely determined (56,11,2)-symmetric design (a biplane).

There is a general doubling construction, see [42].

Theorem 1. An n-cap in PG(d,q) allows the construction of a 2n-cap in AG(d +1,q).

This also explains the Pellegrino cap in AG(4,3). It follows from the doubling construc-
tion applied to the elliptic quadric in PG(3,3). When applied to the Hill cap, doubling
yields a 112-cap in AG(6,3). Potechin [46] showed that this cap is maximal and uniquely
determined. Starting from PG(6,3) we are in uncharted territory. Most of the known con-
structions of large caps in higher dimensional spaces over F3 make use of the Hill cap. This
starts with the Calderbank-Fishburn 236-cap [14] in AG(7,3) and a 248-cap in PG(7,3)
(see [21]). Those caps have as automorphism groups semidirect products of E32 by S5 and
of E64 by S5, respectively. Exceptions are a recently discovered 541-cap in PG(8,3) and
a 2744-cap in PG(10,3) which resulted from a computer search. The game of SET can
be used as a playful motivation to study caps in affine ternary spaces, see [7, Section 3.6]
and [16]. The 81 cards of the game correspond to the points of AG(4,3) and a cap is a point
set not containing a SET. Thanks to Pellegrino, Hill, and Potechin, we now know what are
the largest cardinalities of SET-free collections of cards in the d-dimensional generaliza-
tions of the game where d ≤ 6.

When q > 3

The maximum sizes of caps in PG(4,4) and AG(4,4) are 41 and 40, respectively. The 40-
cap in AG(4,4) is uniquely determined [22]. It is complete in PG(4,4). Its automorphism
group is a semidirect product of E16 and A5. It can be shown that the two 41-caps given

2



i
i

“CapSurvey” — 2010/4/28 — 14:09 — page 3 — #3 i
i

i
i

i
i

in [19] are in fact the only 41-caps in PG(4,4). There is a relation of duality between one
of the two 41-caps in PG(4,4) and the 40-cap K in AG(4,4): embed AG(4,4) in PG(4,4).
There are 40 hyperplanes of PG(4,4) meeting K in 4 points. Those hyperplanes together
with the empty hyperplane form the dual of a 41-cap. The other 41-cap in PG(4,4) had in
fact been found earlier, by Tallini [54]. Its automorphism group is solvable of order 240.
Hill [36] observes: For each of the known values of m2(r,q), there is a cap K in PG(r,q) of
that size on which Aut(K) acts as a transitive permutation group. Unfortunately, this is no
longer true as none of the two 41-caps in PG(4,4) admits a transitive automorphism group.
Still the metarule that extremal objects tend to be very symmetric is verified also here: the
more symmetric 41-cap has a large automorphism group which is transitive on all but one
of its points.

Another exceptional object is the Glynn cap [33], a 126-cap in PG(5,4). It contains a
120-cap in AG(5,4) and admits PGL(3,4) as an automorphism group. Observe that this is
the second time we encounter the simple group PSL(3,4). We saw it acting on the ternary
Hill cap as well.

4 The link to linear codes

Let K an n-cap in PG(k− 1,q) and G a k× n matrix whose columns are representatives
of the points of K. Then G is a check-matrix of a [n,n− k,4]q-code C⊥ and this is an
equivalent description of the cap property. Its dual C =C(K) may be called a cap-code. It is
a projective [n,k,d]q-code where d is the largest number such that outside every hyperplane
H of PG(k− 1,q) there are at least d points of K. Good caps often yield good cap-codes
as well. For example, Pellegrino’s result implies directly that the code of the Hill cap is
an [56,6,36]3-code and this is a code meeting the Griesmer bound with equality (see [7,
Theorem 5.7]).

5 General bounds

The best known general upper bound on the size of a cap uses a version of the Fourier
transform (see [10], Meshulam [41] and [7, Section 16.3]). Let Ck(q) be the maximum size
of a cap in AG(k,q) and ck(q) =Ck(q)/qk. Then

ck(q)≤ (q−k + ck−1(q))/(1+ ck−1(q)) for q > 2,k ≥ 3.

A weak form states

ck(q)≤ (k+1)/k2 for q > 2,k ≥ 3.

Together with the doubling construction (Theorem 1) this also yields bounds on caps in
projective spaces. In fact, if there is an n-cap in PG(k− 1,q) then there is a 2n-cap in
AG(k,q), hence n≤Ck(q)/2. In low dimensions, the bounds of [53] are better.

6 Recursive constructions

The archetype of all recursive cap constructions is Mukhopadhyay’s product construction
from [42]. Here is a generalization, [7, Theorem 16.62]:
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Theorem 2. If there is an n-cap K1 ⊂ AG(k,q) and an m-cap K2 ⊂ PG(l,q), then there is
a cap (the product cap) of nm points in PG(k+ l,q).

If A is avoided by i ≥ 1 hyperplanes in general position and B by j ≥ 0 hyperplanes
in general position, then the product cap is avoided by i+ j− 1 hyperplanes in general
position.

The doubling construction Theorem 1 is a special case of Theorem 2. Here is a general-
ization, [7, Theorem 16.63]:

Theorem 3. Assume the following exist:

• An n-cap in AG(k,q) which can be extended to an (n+w)-cap by some w points in
the hyperplane at infinity, and

• An m-cap in PG(l,q).

Then PG(k+ l,q) contains an (nm+w)-cap.

An application to the elliptic quadric in PG(3,q) yields a classical construction of
B. Segre [51]: an m-cap in PG(l,q) leads to an (q2m+ 1)-cap in PG(l + 3,q). A tan-
gent hyperplane to a given point set in a projective space is a hyperplane which meets the
point set in precisely one point. The following is [20, Theorem 10].

Theorem 4. Assume the following exist:

• An n-cap in PG(k,q) possessing a tangent hyperplane, and

• An m-cap in PG(l,q) possessing a tangent hyperplane.

Then PG(k+ l,q) contains an (nm−1)-cap.

Application to the elliptic quadric in PG(3,q) yields a (q4 + 2q2)-cap in PG(6,q). For
q≥ 4, this is the largest known cap in PG(6,q). This leads to the natural question if larger
caps can be constructed in PG(6,q) for q > 3. Many of the best known caps, even in mod-
erately small dimensions, have been constructed by applying some version of the product
construction to caps from lower-dimensional spaces. Rather sophisticated product construc-
tions are used in [17] to construct a 1216-cap in PG(9,3) (whose automorphism group is an
extension of a normal subgroup of order 28 by S5) and a 6464-cap in PG(11,3).

7 Families of caps in fixed dimension

We are interested in families of caps in PG(d,q) for all q, or at least for an infinite family of
fields Fq, whose number of points is cqα+ lower terms. What is the largest exponent α and,
for this α, what is the largest constant c? We then speak of a family of order cqα. Clearly
(α,c) = (2,1) for d = 3.

4



i
i

“CapSurvey” — 2010/4/28 — 14:09 — page 5 — #5 i
i

i
i

i
i

The case of projective dimension d = 4

This is the smallest interesting dimension and it is difficult. It is not known if an exponent
α > 2 can be reached. Choosing elliptic quadrics in two solids shows that order 2q2 can
always be reached. A family of order 2.5q2 for arbitrary odd characteristic is constructed
in [9]. In characteristic 2, only one family of order cq2 for c > 2 is known. This is a family
of (3q2 +4)-caps Kq ⊂ AG(4,q), q = 2odd constructed in [23]. For q = 2even the existence
of a family of caps of order cq2, for c > 2, remains an open problem.

Definition 1. Let q = 2 f . For 0 6= v ∈ Fq, let pv be the number of elements 0 6= x ∈ Fq such
that

tr(x) = tr(v/x) = 1

where tr : Fq −→ F2 is the absolute trace.

The elliptic curve with affine equation y2 + y = x+ v/x has precisely 4pv rational points.
The weight distribution of the binary Kloosterman and Mélas codes are determined by the
numbers pv. Those numbers were determined by Schoof and van der Vlugt [48]. In [23], it
is shown how the weight distribution of the cap-codes Cq corresponding to Kq is determined
by the numbers pv as well. In particular the minimum distance follows from the Hasse
bound on the number of rational points of an elliptic curve. In the smallest case, C8 is
a [196,5,164]8-code which can be extended to a [200,5,168]8-code. This relation is one
illustration of the use of algebraic geometry in coding theory. The most prominent such link
is the construction of algebraic-geometric codes due to Goppa and Manin [34,40]. However
there are many examples for the use of algebraic curves in determining the structure of
classical codes as well.

The family Kq has more interesting structure. There is a special point P0 such that Kq \
{P0} is a dual BCH-code, and those 3q+3 points are distributed on three parabolic quadrics.
This raises the general question to determine the cyclic codes of dual distance 4.

Projective dimension d ≤ 5 over F5

A 66-cap in PG(4,5) was found in [21] using a complicated recursive construction based
on the ovoid in PG(3,5). This 66-cap is rather symmetric. Its automorphism group is a
direct product of A5 and the dihedral group D8. This indicates a rich geometric structure.
In fact, the 66-cap in PG(4,5) and its partner, a newly discovered 195-cap in PG(5,5), turn
out to be closely related to the conic section in PG(2,5) and a classical geometric structure
associated to it, the Barlotti arcs (see [2]). In the following we sketch the construction.

Start from the conic C ⊂ PG(2,5) defined by the equation Y 2 = XZ. Its points are P∞ =
(0 : 0 : 1) and Py = (1 : y : y2),y ∈ F5. The tangents are

t∞ = [1 : 0 : 0] and ty = [y2 :−2y : 1].

These are the lines [u : v : w], where v2+uw = 0. The interior points (those not on a tangent
to C) are (x : y : z), where y2− xz is a non-square. These are the points (1 : y : z) where
y2− z = ±2. The interior points are therefore (1 : y : y2± 2), where y is arbitrary. The
secants are the lines [u : v : w], where v2 + uw is a non-zero square and consequently the
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exterior lines are [u : v : w], where v2+uw is a non-square. The exterior line [−v2+2 : v : 1]
contains the interior points

(1 : 2v−1 :−v2 + v+3), (1 : 2v+1 :−v2− v+3) and (1 : 2v :−v2 +3).

The exterior line [−v2−2 : v : 1] contains the interior points

(1 : 2v−2 :−v2 +2v+2), (1 : 2v+2 :−v2−2v+2) and (1 : 2v :−v2 +2).

Definition 2. A half-point is a pair ±v of non-zero vectors. The parity of a non-zero
element of F5 is its quadratic remainder symbol.

Observe that each point of PG(d,5) is the union of two half-points.

Definition 3. Let G ⊂ GL(3,5) the stabilizer of the set of vectors in F3
5 that represent the

points of the conic C. Let

K∞ = (0,0,1) and Ky = (1,y,y2) for y ∈ F5.

Define K = {±Kτ | τ ∈ PG(1,5)}, a system of half-points representing the points of C.

The group G acts on the two-element set {K,2K}. The stabilizer of the system K of
half-points is a subgroup G0 ⊂ G of index 2, where G0/〈−1〉 ∼= S5 and G/〈−1〉 ∼= S5×Z2.

We turn to the action of G on vectors generating interior points.

Definition 4. Let I(y,1) = (1,y,y2 + 2) and I(y,2) = 2(1,y,y2− 2) for y ∈ F5. Then the
union I of the±I(y,1) and±I(y,2) is a system of 10 half-points which generate the interior
points of C.

Here are those vectors:

(1,0,2),(1,1,3),(1,2,1),(1,3,1),(1,4,3)

(2,0,1),(2,1,4),(2,2,3),(2,3,3),(2,4,4).

Lemma 1. The group G acts on the two-element set {I,2I}. The stabilizer G1 of the system
I of half-points representing interior points satisfies G1/〈−1〉 ∼= S5.

The points (1 : I) form a 20-cap in AG(3,5). The stabilizer G2 of K and I in G satisfies
G2/〈−1〉 ∼= A5. Most important is the following lemma:

Lemma 2. The half-points in K ∪ I have the following property: Let K1,K2, I1, I2 be non-
zero vectors in F3

5 such that K1,K2 belong to different half-points from K and I1, I2 belong
to different half-points from I.

• If c1K1 + c2K2 +dI1 = 0, where c1,c2,d ∈ F5, not all = 0, then c1,c2 are non-zero of
different parity.

• If cK1 +d1I1 +d2I2 = 0, where c,d1,d2 ∈ F5, not all = 0, then d1,d2 are non-zero of
different parity.

This leads to a recursive construction procedure:

6
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Theorem 5. Let l ≥ 2 and A,B⊂ Fl
5 such that the following are satisfied:

1. 0 /∈ A =−A,0 /∈ B =−B. In other words, A is the union of |A|/2 half-points, likewise
for B. Denote by CA,CB the corresponding point sets in PG(l−1,5).

2. The set CB is a |B|/2-cap in PG(l−1,5).

3. The points (1 : a),a ∈ A, form a cap in AG(l,5) (equivalently: (A+A)∩2A = /0).

4. CA∩CB = /0.

5. The points represented by A+ 2A are disjoint from the points represented by B, and
symmetrically with the roles of A,B exchanged.

Then the points (P,a) and (Q,b) where P ∈ K,Q ∈ I and a ∈ A,b ∈ B represent a cap M of
size 6|A|+10|B| in PG(l +2,5).

In case l = 2, let

A =±{(1,0),(1,2)}, B =±{(0,1),(1,1)}.

Then the conditions of Theorem 5 are satisfied. It follows that M is a 64-cap in PG(4,5).
Points (0 : 0 : 0 : 1 : 3) and (0 : 0 : 0 : 1 : 4) are extension points. This yields a 66-cap.
Each of the extension points is on an obvious tangent hyperplane. At this point, we have
reconstructed the 66-cap in PG(4,5). A similar process works one dimension higher.

Let l = 3. Choose A = K the union of the representatives of conic half-points. It is
possible to find B with the same structure as K for a conic disjoint from C. One choice is
the quadric Q(X ,Y,Z) = X2 +Z2−2(XY +XZ +Y Z) and its half-points

B =±{010,101,012,210,112,211}.

This yields a 192-cap in PG(5,5) by Theorem 5. Observe that B consists entirely of exterior
points with respect to A. There are three extension points yielding a 195-cap in PG(5,5).

Higher dimensions

In characteristic 2, the product construction applied to hyperovals and elliptic quadrics
yields (q + 2)(q2 + 1)-caps in PG(5,q). Recently, Kroll-Vincenti [39] constructed(
(q+2)(q2 +2)−1

)
-caps in PG(5,q) for even q ≥ 8. In odd characteristic a rather spe-

cialized version of the product construction (see [20]) applied to elliptic quadrics and conic
sections yields (q+ 1)(q2 + 3)-caps in PG(5,q). The (q4 + 2q2)-caps in PG(6,q) for ar-
bitrary q have been mentioned before as an application of Theorem 4. An application of
Theorem 3 to this cap produces q2(q2 +1)2-caps in PG(9,q).

8 Concrete bounds

Here is a list of the currently best known lower bounds on large caps in PG(d,q), for d ≤ 11
and q≤ 9. The superscript c indicates that the cap is known to be complete.

The lower bounds are known to agree with the upper bound only when d ≤ 3, for d ≤ 5
in the ternary and for d = 4 in the quaternary case. The upper bound in PG(6,3) currently
is 136 [1]. In PG(4,5) the upper bound is 88 [26].
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d\q 3 4 5 7 8 9
2 4c 6c 6c 8c 10c 10c

3 10c 17c 26c 50c 65c 82c

4 20c 41c 66c 132c 208c 212c

5 56c 126c 195c 434c 695c 840c

6 112c 288c 675c 2499c 4224c 6723c

7 248c 756c 1715c 6472c 13520c 17220c

8 541c 2110c 5069c 21555c 45174 68070
9 1216c 5040c 17124c 122500 270400 544644
10 2744c 15423c 43876 323318 878800 1411830
11 6464c 34566 130951 1067080 2931457 5580100

Table 1: Lower bounds

9 The atoms of cap theory

Most of the known large caps in larger dimensions result from applications of some recur-
sive construction to exceptionally large caps in lower dimensions. This raises the question
what the elementary building blocks are, the large caps which do not result from recursive
constructions themselves and which are used as ingredients for the constructions in higher
dimensions. We call them the atoms of cap theory. Clearly, the classical models have that
status, see Section 2. Also large caps possessing a large group of automorphisms will be
considered to be atoms. This leads to the following list of atoms:

1. The ovals and hyperovals in AG(2,q).

2. The elliptic quadrics in PG(3,q).

3. The Tits ovoids in PG(3,22m+1),m≥ 1.

4. The Hill cap in PG(5,3).

5. The highly symmetric 41-cap in PG(4,4) and its dual partner, the 40-cap in AG(4,4).

6. The Glynn cap in PG(5,4).

Now we present some more examples of caps that have the potential to be regarded as
atoms.

The complete 14-cap in PG(3,4)

This object is uniquely determined. Its group of automorphisms is the semidirect product
of an elementary abelian group of order 8 and GL(3,2) (see [19]). Here is a construction
using only hyperovals: there is a configuration in PG(3,4) consisting of three collinear
planes and a hyperoval in each plane, where the line of intersection is a secant for all
three hyperovals. The union of those hyperovals is our 14-cap. We will encounter it in
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Section 11 as a quantum cap. It is also used in the construction of a quantum 38-cap in
PG(4,4). The complete 14-cap in PG(3,4) is a special case of a result of Segre [52] who
constructed complete (3q+ 2)-caps in PG(3,q) for all even q ≥ 4. The construction was
further generalized by Pambianco-Storme [44].

A 66-cap in PG(4,5)

It has been mentioned in Section 7 that its group of automorphisms is A5×D8. It possesses
a tangent hyperplane and therefore can be used in Theorem 4. This produces a 1715-cap in
PG(7,5).

A 132-cap in PG(4,7)

This cap resulted from a computer search. Its automorphism group has order 192.

A 208-cap in PG(4,8)

This is the largest cap known in PG(4,8). It resulted from a computer construction based
on a cyclic group of order 82− 1 = 63. We raise the problem if this construction can be
generalized in the following way: a (3q2 + 2q)-cap in PG(4,q), q = 22m+1, admitting the
action of a certain cyclic group of order q2− 1, consisting of 3 regular orbits, one orbit of
length q+ 1, one orbit of length q− 1, and three fixed points. The conjecture is true for
q = 8 and for q = 32.

A 195-cap in PG(5,5)

This cap was constructed as an application of Theorem 5. It possesses tangent hyperplanes
and therefore can be used in Theorem 4. With the elliptic quadric in PG(3,5) as second
ingredient, this yields a 5069-cap in PG(8,5). Application of Theorem 3 to the 195-cap in
in PG(5,5) and the 675-cap in PG(6,5) yields a cap with 194×675+1 = 130,951 points
in PG(11,5). We saw in an earlier subsection that the 66-cap in PG(4,5) and the 195-cap in
PG(5,5) result from a recursive construction which only uses a conic and its embedding in
the plane as ingredients. It is therefore up to discussion if those caps should be considered
as atoms. The automorphism group of the 195-cap is isomorphic to A5×Z4×Z2.

A 434-cap in PG(5,7)

The Glynn cap makes use of a certain mapping γ : PG(2,q2) −→ PG(5,q). The image
Γq of this mapping is a set of (q4 − q)/2 points. In case q = 4, this is the Glynn
cap. In [21], a computer program produced a subset of Γ7 ⊂ PG(5,7), which is a
434-cap whose automorphism group has order 672 = 4 × 168. This automorphism
group is not solvable. It involves the simple group of order 168. It may be possible
to find further large caps as subsets of Γq. If synthetic constructions can be found, it
may be the case that the Glynn cap is the beginning of an infinite family of caps in PG(5,q).
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Most of the automorphism groups were calculated using Thomas Feulner’s program [29]
which is available online, see also the paper [28].

10 An asymptotic problem

As in Section 5, let Ck(q) be the maximum size of a cap in AG(k,q). Define

µ(q) = lim sup
k−→∞

logq(Ck(q))/k.

Clearly, we could use caps in PG(k,q) instead of AG(k,q) and obtain the same limit.
Working with affine caps has the advantage that because of the product construction of
Theorem 2, each value Ck(q) in a concrete dimension k yields a lower bound: µ(q) ≥
logq(Ck(q))/k. In particular, the affine part of the elliptic quadric in PG(3,q) yields
µ(q) ≥ 2/3. A basic open problem is to show that µ(q) < 1. The best known lower bound
for general q seems to follow from an application of Theorem 4 to elliptic quadrics, see [20].
This leads to a cap of size (q2 +1)2−1 = q4 +2q2 in PG(6,q). It is easy to see that there
is a hyperplane meeting this cap in q2 + 1 points. This leads to an (q4 + q2− 1)-cap in
AG(6,q) and the lower bound µ(q) ≥ logq(q

4 + q2− 1)/6. For q = 4, the affine part of
the Glynn-cap yields a better lower bound: µ(4) ≥ log4(120)/5 = 0,6906 . . . As is to be
expected, the ternary case has been studied most intensively. The recursive constructions of
Calderbank-Fishburn [14] based on the Hill cap have been further refined in [17]. Currently,
the best known lower bound is µ(3)≥ 0,724851 . . .

11 Additive codes and quantum caps

Additive codes are a far-reaching generalization of linear codes. Here we view the alphabet
of size qm not as a field but rather as a vector space over the subfield Fq and assume linearity
only over Fq. Of particular interest is the quaternary case (q = m = 2).

Definition 5. Let k be such that 2k is a positive integer. An additive quaternary [n,k]4-
code C (length n, dimension k) is a 2k-dimensional subspace of F2n

2 , where the coordinates
come in pairs of two. We view the codewords as n-tuples where the coordinate entries are
elements of F2

2.
A generator matrix of C is a binary (2k,2n)-matrix whose rows form a basis of the

binary vector space C.

One reason to concentrate on the quaternary case is the link with quantum error-
correction established in [15]. It may be described equivalently using the symplectic form,
which is a basic notion from geometric algebra.

Definition 6. Let V = V (2n,q) be a 2n-dimensional vector space over Fq. A symplectic
form on V is a mapping 〈,〉 : V ⊕V −→ Fq which satisfies the following conditions:

• 〈x1 + x2,y〉= 〈x1,y〉+ 〈x2,y〉, 〈x,y1 + y2〉= 〈x,y1〉+ 〈x,y2〉 and
〈cx,y〉= 〈x,cy〉= c〈x,y〉 for all x,xi,y,yi ∈V,c ∈ Fq.

• 〈x,x〉= 0 for all x ∈V .

10
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• The only vector x satisfying 〈x,y〉= 0 for all y ∈V is x = 0.

If 〈x,y〉= 0 we also write x⊥ y and y∈ x⊥. Let W ⊂V . The dual of W is a subspace defined
by

W⊥ = {y|y ∈V,〈w,y〉= 0 for all w ∈W}.

A symplectic space V possesses a symplectic basis {v1, . . . ,vn,w1, . . . ,wn} such that
〈vi,v j〉= 〈wi,w j〉= 0 for all i, j and 〈vi,w j〉= δi, j.

The pertinent notion is the following.

Definition 7. A pure additive quantum stabilizer [[n,m,d]]-code C (short: quantum code)
is a quaternary additive code C of length n and dimension (n−m)/2 which satisfies

• C ⊆C⊥ where the dual is with respect to the symplectic form.

• C⊥ has distance ≥ d.

The translation into geometry is as follows, see [11]:

Theorem 6. The following are equivalent:

• A pure [[n,n− r, t +1]] quantum stabilizer code.

• A set of n lines, the codelines, in PG(r−1,2) satisfying:

– any t codelines are in general position and

– the quantum condition: for every secundum (subspace PG(r−3,2)) S, the num-
ber of codelines skew to S is even.

In particular, pure quantum codes are always described in terms of sets of pairwise skew
lines in binary projective space. When d = 3, the only additional condition to satisfy is the
quantum condition. In contrast to the classical theory of linear codes, even case d = 3 is not
trivial. The classification of all parameters n,m such that [[n,m,3]] quantum codes exist is
very recent, see [8].

The smallest open case is d = 4 and the corresponding quantum codes form a natural
generalization of the concept of a cap. Under the additional hypothesis that the code be not
only additive, but also F4-linear, the concept of a quantum cap is obtained:

Definition 8. A pre-quantum cap is an n-cap K ⊂ PG(m−1,4) which satisfies the follow-
ing equivalent conditions:

• K∩H has the same parity as n for every hyperplane H.

• The corresponding quaternary linear cap-code C(K) has all weights even.

• C(K) is self-orthogonal with respect to the Hermitian form.

A quantum cap in PG(m−1,4) is a pre-quantum cap which is not contained in a proper
subspace.

11
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Here the Hermitian form on Fm
4 is defined by B((x1,x2, . . . ,xm),(y1,y2, . . . ,ym)) =

∑
m
i=1 xiy2

i . A quantum n-cap in PG(m− 1,4) is equivalent to a pure [[n,n− 2m,4]] quan-
tum code which is F4-linear. As an example, consider the elliptic quadric in PG(3,4). As
this cap has 17 points and plane intersections of sizes 1 or 5, the conditions of Definition 8
are satisfied. The corresponding cap-code is a [17,4,12]4-code and it is a [[17,9,4]] quan-
tum code. The smallest quantum cap in PG(3,4) has 8 points. It may be constructed as
the complement of PG(2,2) in PG(3,2), where PG(3,2) is embedded in PG(3,4). This is a
quantum [[8,0,4]]-code. The cardinalities of quantum caps in PG(3,4) are 8,12,14,17. The
cardinalities of quantum caps in PG(4,4) are a priori between 10 (the obvious theoretical
minimum) and 41, the size of the largest cap in PG(4,4). In fact, one of the two 41-caps
in PG(4,4) is quantum as is the uniquely determined largest cap in AG(4,4), which has 40
points. Here is a construction of a quantum 10-cap in PG(4,4): choose two planes Π1,Π2 in
PG(4,4) which intersect in a point P. Choose ovals Oi ⊂Πi such that P is the nucleus of Oi.
Then O1∪O2 is a quantum cap. The most obvious recursive construction is the following

Theorem 7. Let K1,K2 be disjoint pre-quantum caps in PG(m−1,4). If K1∪K2 is a cap,
then it is a pre-quantum cap.

Let K1 ⊂ K2 be pre-quantum caps. Then also K2 \K1 is a pre-quantum cap.

This theorem can be used in two ways. One is to start from a quantum cap K2 and
construct quantum caps K1 ⊂ K2. This point of view was adopted by Tonchev [56] who
found quantum caps contained in the quantum 41-cap in PG(4,4) (of sizes n∈ {10,12,14−
27,29,31,33,35}) and in the Glynn cap, a 126-cap in PG(5,4) which is quantum. The
question which subcaps of a given quantum cap are pre-quantum can be expressed in terms
of a certain binary code.

Definition 9. Let K be a cap in PG(m−1,4) and M a corresponding generator matrix. The
associated binary code A is the binary linear code of length n generated by the supports
of the quaternary codewords of the code generated by M.

Observe that by definition, K is pre-quantum if and only if A is contained in the all-even
code. This leads to the following characterization.

Theorem 8. Let K ⊂ PG(m−1,4) be pre-quantum and K1 ⊆ K. Then K1 (and its comple-
ment K \K1) is pre-quantum if and only if the characteristic vector of K1 is contained in the
dual A⊥ of the binary code A associated to K.

This is essentially Theorem 7 of [15].
The other way how to use Theorem 7 is to construct quantum caps as a union K1 ∪K2

of two disjoint pre-quantum caps K1 and K2. This often leads to more transparent con-
structions. For example, a quantum 12-cap in PG(3,4) can be constructed simply as the
union of two disjoint hyperovals on two planes. Bartoli [3] describes a quantum 20-cap
in PG(4,4) and constructs more quantum caps in PG(4,4) of cardinalities 29,30,32,33,34
in [5]. Theorem 7 can be generalized.

Theorem 9. Let Π1,Π2 be different hyperplanes of PG(m,4) and Ki ⊂Πi be pre-quantum
caps such that K1∩Π1∩Π2 = K2∩Π1∩Π2. Then the symmetric sum K1+K2 = (K1 \K2)∪
(K2 \K1) is a pre-quantum cap.
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Theorem 10. Let Π1,Π2 be different (m− 2)-dimensional subspaces of PG(m,4) which
together generate PG(m,4). Let Ki ⊂ Πi be pre-quantum caps such that K1 ∩Π1 ∩Π2 =
K2∩Π1∩Π2. Then the symmetric sum K1 +K2 is a pre-quantum cap.

As an application of Theorem 10, choose two planes Π1,Π2 in PG(4,4) which meet in a
point X . Let Ki∪{X} be a hyperoval in Πi, for i = 1,2. Then the symmetric sum K1∪K2
is a quantum 10-cap in PG(4,4). In [4], we give geometric constructions of quantum 36-
caps and of quantum 38-caps in PG(4,4). This yields new quantum codes with parameters
[[36,26,4]] and [[38,28,4]].

Tonchev [56] found a quantum 27-cap in PG(6,4) by the action of an automorphism of
order 13. It turns out that the dual distance is in fact 5, so this yields a quaternary linear
[[27,13,5]]-quantum code.

In [11], a quantum 5040-cap in PG(9,4) and a quantum 756-cap in PG(7,4) are con-
structed. For a long time, the smallest open problem on additive quantum codes concerned
the existence of [[13,5,4]]-quantum codes. This has been settled in [12]: such a quantum
code does not exist.

12 A problem in additive number theory

Definition 10. Let A be an abelian group, written additively, and e = exp(A) its exponent,
i.e. the lowest common multiple of its element orders. A sequence over A is a mapping
σ : A −→ {0,1,2, . . .}. We think of a sequence as a multiset, where each element a ∈ A
occurs with multiplicity σ(a). The size of a sequence is ∑a σ(a).
A sequence S(A) is a sequence over A which does not contain subsequences of size e which
sum to 0. Denote by l(A) the largest size of a sequence S(A).

The problem is the determination of l(A). This problem and certain related problems
have a long history in additive number theory. Clearly, all multiplicities of elements in a
sequence S(A) are bounded by e−1.

In the literature mostly the case of homocyclic groups A = Zn
m is considered. One reason

for this may have been the following observation: l(Zn
m)+1 is the smallest number N such

that each set of N points in the rank n integer lattice Zn contains a subset of m points whose
centroid is in Zn. Clearly exp(Zn

m) = exp(Zm) = m. In case m = 3, there is an obvious link
to affine caps. Recall from Section 5 that Cn(q) denotes the largest size of a cap in AG(n,q).

Proposition 1. l(Zn
3) = 2Cn(3).

Proof. This follows directly from the fact that a subset of AG(n,3) is a cap if and only if
it does not contain a 3-subset summing to 0. If K is a cap, then the multiset 2K, where
each element of K appears with multiplicity 2, is a sequence S(Zn

3). On the other hand, if
a sequence S(Zn

3) is given, then using each element of multiplicity > 0 with multiplicity 2
produces a sequence S(Zn

3) which has the form 2K, where K is a cap.

Recall that each abelian group can be written as a direct product A = Zm1 × ·· · ×Zmr

where m1 | · · · | mr in a unique way and r is the rank of A, the largest rank of its Sylow
p-subgroups, where p varies over the prime divisors of |A|. For rank ≤ 2, the answer to our
problem is known:
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Theorem 11. Let A = Zm1×Zm2 where m1 | m2. Then l(A) = 2m1 +2m2−4.

A proof is in [32]. For rank one, this implies l(Zm) = 2m− 2. This implies that each
sequence of 2m−1 integers contains a subsequence of m integers which sum to 0 mod m.
This is the Erdös-Ginzburg-Ziv theorem, see Section 2.4 of Nathanson [43].

A global approach

Here is a related global problem.

Definition 11. A subset U ⊂ {0,1,2, . . .}n is a sequence S(n,Z) if for each odd integer m,
the multiset (m−1)(U mod m) is a sequence S(Zn

m).

Here (m− 1)(U mod m) stands for the following: each element of U is read mod m in
each component, the resulting tuple in Zn

m is used with multiplicity m− 1. In particular
each sequence S(n,Z) of cardinality u yields a sequence S(Zn

m) of cardinality (m− 1)u,
for each odd m. Choosing m = 3, we see that U mod 3 is a cap in AG(n,3), consequently
|U | ≤Cn(3).

Proposition 2. Let U = {0,1}n. Then S is a sequence S(n,Z) of size 2n.

Proof. Assume S is a multisubset of (m−1)(U mod m), defined by multiplicities µv≤m−1
for v∈ S, such that ∑µv =m and ∑µvv≡ 0 (mod m). The coordinate entries in ∑µvv are 0 or
m. Let v 6= v′ such that µv > 0,µv′ > 0. Choose notations such that there exists a coordinate
i with vi = 0,v′i = 1. Then coordinate i yields a contradiction. There is therefore only one v
such that µv > 0. This yields the contradiction µv = m.

Proposition 2 is due to Harborth [35]. This result implies l(Zn
m)≥ (m−1)2n. Sets S(3,Z)

and S(4,Z) of maximal sizes C3(3) = 9 and C4(3) = 20, respectively, were constructed
in [24, 27]. Here is the sequence S(3,Z) of size 9 as given in [27]. It is in fact contained in
{0,1,2}3 and consists of the following triples:

(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,2),(1,2,2),(2,1,2).

Let us check the defining property for m = 3. This is equivalent with the statement that the
set of points (1 : x2 : x3 : x4) ∈ AG(3,3), where x = (x2,x3,x4) varies over the nine triples
above and entries are interpreted in Z/3Z, form a cap. In fact all those points are on the
quadric x2

2 + x2
3 + x2

4− x1x2− x1x3− x1x4 + x2x3 = 0. This is an elliptic quadric in PG(3,3)
whose points therefore form a cap. As a consequence l(Z3

m)≥ 9(m−1) for all odd m≥ 3.
It is conjectured in Gao-Thangadurai [31] that equality always holds. The conjecture has
been confirmed for m = 3a5b, see [30]. An analogous conjecture concerning Z4

m is made
in [24]: l(Z4

m) = 20(m−1) for all odd m≥ 3.
In [18], a product construction is used to produce sequences S(5,Z),S(6,Z),S(7,Z) of

sizes 42, 96, and 192, respectively. As 42 is the size of the second-largest complete cap in
AG(5,3) (this fact is proved in [18]), it follows that any sequence S(5,Z) of size > 42 must
have the property that its image mod 3 is contained in the affine Hill cap. The existence
of such a sequence S(5,Z) remains an open problem. Another open problem concerns the
following conjecture: Each sequence S(A) of maximal length l(A) arises from a subset of
A by using each element with multiplicity e−1.
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