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In this note we illuminate and apply the equivalence of quadratic APN
functions to certain subspaces of alternating bilinear forms. These subspaces
can be characterized by the rank-distance of the dual subspace, or equiva-
lently, as the subspaces of

∧2 Fm2 avoiding the variety of elements of rank 2.
Or, in the geometric language, as subspaces external (or skew) to the line
Grassmannian.

1 Introduction

Definition 1. Let Fp be the finite field with p elements, p prime. A function

F : Fmp → Fnp

which satisfies, for all 0 6= a ∈ Fmp and b ∈ Fnp ,

|{x ∈ Fmp |F (x+ a)− F (x) = b}| ≤ d (1)

with d = 1 is called perfect nonlinear (PN) or planar. The function F is called
almost perfect nonlinear (APN) if it satisfies the equation with d = 2.

PN functions do not exist in even characteristic. Due to the existence of PN functions
in odd characteristic, APN functions are mostly studied in characteristic 2 and the
majority of papers on APN functions deals with the (extremal) case m = n. However
there exist also some results in an even more general setting, obtained by replacing the
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vector spaces in Definition 1 by arbitrary abelian groups (see e.g. [25, 16]).

Let b ∈ Fnp . The functions

Fb : Fmp → Fp : x 7→ b · F (x)

are called the component functions of F . These can be represented by polynomials
in Fp[X1, . . . , Xm] (also called Boolean functions, in the case p = 2). What is referred
to as the (algebraic) degree of an APN function is the maximum of the algebraic
degrees d◦(Fb) among all component functions of F reduced modulo Xp

i −Xi.
Quadratic APN functions are APN functions of degree 2. We will restrict

ourselves to the case p = 2 and mainly to quadratic APN functions.

APN functions have relations to other objects in mathematics. There is the, meanwhile
classical, equivalence to binary error correcting codes of length 2m and dimension m +
n + 1, containing the first order Reed-Muller Code and with dual distance 6 (see [12]).
This is the code CF as defined here in Equation (5).

An other example is the equivalence of quadratic APN functions with a subclass of
dimensional dual hyperovals and semibiplanes. These behave, to some extent, very
similar as PN functions, spreads and translation planes in odd characteristic. This link
also proved to be useful (see e.g. [16, 2, 20,25,32,33]).

In this note we want to draw the attention to a further, less exploited, link of quadratic
APN functions. Modulo affine functions, a quadratic function, in the above defined sense,
is equivalent to a subspace of alternating bilinear forms (this will be made more explicit
later). These are classical and long studied objects. The APN condition (Equation (1))
translates straightforward in terms of these subspaces (as used en passant by Nakagawa
and Yoshiara [30, 34], see also [21]). Suitably stated this fits seamless in the theory
of association schemes of alternating bilinear forms due to Delsarte and Goethals [17].
After introducing some notations in the next section, we point out this link in more
detail, and then give, as application, some results on the structure of quadratic APN
functions, which were valuable for the computer based classification of the quadratic
APN functions F : F6

2 → F6
2. Also alternative arguments for some results on quadratic

APN functions are given.
Finally, as a further application of this link, we will see that quadratic APN functions

are equivalent to some already investigated objects in multilinear algebra, namely
subspaces of

∧2 Fm2 avoiding the variety of elements of rank 2. Or in geometric
language, to external (or skew) subspaces to the line Grassmannian for q = 2. The
known constructions of these objects (as far as aware to the author) turn out to be
equivalent to the Gold-function.

APN functions have attracted some interest in the last years and several new
quadratic APN functions have been found. This thus leads to new examples of such
subspaces. On the other hand, the link with alternating forms and related structures
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may also prove to be useful in the other direction, for the further development of APN
functions, such as the link with codes, PN functions and dual dimensional hyperovals
already did.

We conclude the introduction by giving an overview of the currently known quadratic
APN functions F : Fm2 → Fm2 (as far as aware to the author). From the classical
monomial APN functions, only the Gold functions are quadratic. All recently found
new APN functions (except one [23]) are quadratic. For m ≤ 5, every quadratic APN
function is equivalent to a Gold function [28,5]. For m = 6, 13 non-equivalent quadratic
APN functions were found by Dillon [18,6]. The author was able to verify by computer
that these are indeed all non-isomorphic quadratic APN functions for m = 6. The
classification in the non-quadratic case, however, still is an open problem. For m = 7,
we know 16, and for m = 8, we know 22 non-isomorphic quadratic APN functions
(see [23] for details). For larger m, there are some sporadic examples (see [22, 23]) and
several infinite series. Identifying the vector space Fm2 with the finite field F2m , the
series can be given as:

F (x) = Reference and some of the conditions

x2i+1 (i,m) = 1, the Gold function [24]

x3 + tr(x9) [9, Corollary 1]

x2s+1 + wx2ik+2nk+s

m = 3k, [8, Corollary 1], see also [1, 2]

x2s+1 + wx2ik+2nk+s

m = 4k, [8, Theorem 2], see also [1, 2]

bx2s+1 + b2
k

x2k+s+2k

+ cx2k+1 +
∑k−1

i=1 rix
2i+k+2i

m = 2k, k, s odd [4, Theorem 1]

ux2−k+2k+s

+ u2k

x2s+1 + vx2k+s+2s

m = 3k, (s, 3k) = 1 [4, Theorem 3]

u2k

x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

m = 3k, (s, 3k) = 1 [3, Theorem 2.1]

x22i+2i

+ bx2k+1 + cx2k(22i+2i) m = 2k, (i, k) = 1 [7, Corollary 1]

x(x2i

+ x2k

+ cx2i+k

) + x2i

(c2
k

x2k

+ sx2i+k

) + x2i+12k

m = 2k, (i, k) = 1 [7, Corollary 2]

2 Notation and definitions

Let F : Fm2 → Fn2 be a function and Fb, b ∈ Fn2 , its component functions, as defined in
the introduction. The Walsh coefficients WF (a, b) are defined as

WF (a, b) :=
∑
x∈Fm

2

(−1)a·x+Fb(x) ∈ Z, a ∈ Fm2 , b ∈ Fn2 .

Then the Walsh spectrum WF , respectively the extended Walsh spectrum ±WF ,
is defined as the multiset (denoted by {∗ · · · ∗}):

WF := {∗WF (a, b)| a ∈ Fm2 , b ∈ Fn2 ∗} resp. ±WF := {∗ |WF (a, b)| | a ∈ Fm2 , b ∈ Fn2 ∗} .

The values for b = 0 are frequently omitted in the definition of the Walsh spectra, but
as WF (0, 0) = 2m and WF (a, 0) = 0, for a 6= 0, these two versions of the definition
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contain the same information.

The function F is called bent if

max
b 6=0
{|WF (a, b)|} = 2m/2

and almost bent (AB) if

max
b6=0
{|WF (a, b)|} = 2(m+1)/2.

For n > m/2, there exist no bent functions [31]. Let m = n, then, for (a, b) 6= (0, 0),
|WF (a, b)| ≤ 2(m+1)/2. AB functions are thus optimal in this sense, m then is necessarily
odd and every AB function is APN [13]. For quadratic APN functions, m odd, also the
converse is true [12]. For more background on Boolean and vectorial functions defined
on Fm2 , we refer to [10,11].

There are several concepts of equivalence for APN functions. We call the set of points

GF := {(1, x, F (x))|x ∈ Fm2 } ⊂ PG(m+ n, 2)

the graph of the function F and define the affine subspaces

X := {(1, x, 0)|x ∈ Fm2 }, Y := {(1, 0, y)|y ∈ Fn2} ⊂ PG(m+ n, 2).

Definition 2. Two APN functions F, F ′ : Fm2 → Fn2 are called:

• CCZ-equivalent [12], if there is an automorphism of PG(m+ n, 2) mapping GF
to GF ′,

• extended affine (EA) equivalent, if there is an automorphism of PG(m+n, 2),
fixing the subspace Y, and mapping GF to GF ′,

• affine equivalent, if there is an automorphism of PG(m + n, 2), fixing the sub-
spaces X and Y, and mapping GF to GF ′.

On the affine points (1, x, y), we can describe this automorphism by(
x
y

)
7→
(
A B
C D

)(
x
y

)
+
(
u
v

)
.

We have EA-equivalence if and only if B = 0, and affine equivalence if and only if
B = C = 0.

Affine equivalent functions are also EA-equivalent. EA-equivalent functions are also
CCZ-equivalent. The algebraic degree of an APN function is an invariant under EA-
equivalence, but not under CCZ-equivalence. As we will focus in this note on quadratic
APN functions, EA-equivalence is the appropriate concept here.
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We wish to remark that, although it is known that there are CCZ-equivalent APN
functions which are not EA-equivalent, for quadratic APN functions with m = n, EA-
and CCZ-equivalence coincide for all APN functions the author was able to test (i.e. the
functions F mentioned in the introduction with m ≤ 10).

An other frequently found definition of EA-equivalence is the following: F and F ′ are
called EA-equivalent if there exist affine bijections A1, A2 and a linear (or affine) map L
such that

F ′ = A2 ◦ F ◦A1 + L.

This definition is equivalent with the one given above as we can identify

A1(x) = A−1(x+ u), A2(y) = D(y) + v + CA−1u and L(x) = CA−1x.

3 Alternating bilinear forms and APN functions

3.1 Alternating bilinear forms

A bilinear map B : Fm2 × Fm2 → F2 is called an alternating bilinear form if for any
x ∈ Fm2 , B(x, x) = 0. This implies that B(x, y) = B(y, x). The alternating bilinear
maps form an

(
m
2

)
-dimensional vector space which we will denote by Am or A for short.

Coordinatize by choosing some basis e1, . . . , em of Fm2 . By abuse of notation, denote
also the matrix representing B ∈ A by B = (bi,j), with bi,j := B(ei, ej). Define a scalar
product on A by

〈A,B〉 :=
∑
i<j

ai,jbi,j .

For a subspace B ⊆ A, define the dual subspace B⊥, as usual, as

B⊥ := {A ∈ A | 〈A,B〉 = 0 for all B ∈ B}.

Use the codimension of the radical of the map B, hence the rank of the matrix B, as
a weight function on A (all elements of A have even rank) and define the corresponding
(rank-)distance as

d(A,B) := rank(A−B) for A,B ∈ A.

The alternating bilinear forms, together with this distance form an association scheme.
We quote some consequences and refer to the original work of Delsarte and Goethals for
the details [17].

Let k := bm/2c. For a subset B ⊆ Am, define the distance distribution a(B) by:

a(B) = a = (a0, . . . , ak), |B|ai := |{(A,B) ∈ B × B | d(A,B) = 2i}|.

For subspaces B, the distance distribution a equals the rank distribution, i.e.

ai := |{B ∈ B | rank(B) = 2i}|.
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The P-transform aP of a is defined as

aP := a′ = (a′0, . . . , a
′
k), a′j =

k∑
i=0

aiPj(i), (2)

where Pi,j = Pj(i) are the generalised Krawtchouk polynomials:

Pj(x) :=
j∑
l=0

(−1)j−l4(j−l
2 )
[
k − l
k − j

]
4

[
k − x
l

]
4

cl, with c := 2m(m−1)/(2k),

and [
x
k

]
b

:=
k−1∏
i=0

bx − bi

bk − bi

are the b-nary Gaussian coefficients.

Theorem 3 ( [17, Theorem 2]). The P -transform aP of the distance distribution of any
subset B ⊆ Am is nonnegative, i.e.

(aP )j ≥ 0, j = 0, . . . , k := bm/2c.

Theorem 4 ( [17, Theorem 3]). Let B ⊆ A be a subspace and let a′ be the distance
distribution of B⊥, then

|B|a′ = aP.

We say that a subset B ⊆ A has (rank-)distance d if d(A,B) ≥ d holds for any
A 6= B ∈ B. Alternating bilinear forms have even rank, especially d = 2δ. (Delsarte and
Goethals call such a B ∈ Am an (m, δ)-set in [17].) There is an analog of the Singleton
bound for these sets.

Theorem 5 ( [17, Theorem 4]). Let B ⊆ Am be a set of distance d = 2δ, then

|B| ≤ ck−δ+1, with c := 2m(m−1)/(2k), k := bm/2c.

Sets attending this bound are called maximal.

Theorem 6 ( [17, Theorem 5]). Let B ⊆ Am be a maximal subspace, then B⊥ is also
maximal and has distance 2k − d+ 4, k := bm/2c.

A base change in Fm2 induces a natural action of GL(m, 2) on Am:

g : Am → Am : B 7→ Bg, Bg(x, y) := B(gx, gy), with g ∈ GL(m, 2).

The matrix of Bg is congruent to the matrix of B (i.e. Bg = gtBg).
We call two subspaces B,B′ ⊆ A congruent or equivalent under the natural

action of GL(m, 2) if there is a g ∈ GL(m, 2) such that B′ = {Bg | B ∈ B} =: Bg.
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Let f : Fm2 → F2. The map

∆ : f 7→ Bf , Bf (x, y) := f(x+ y) + f(x) + f(y) + f(0) (3)

maps the quadratic functions surjectively on A and its kernel consists of the affine func-
tions.

Vice versa, let B ∈ A with associated matrix (bi,j), then the quadratic function
g(x1, . . . , xm) :=

∑
i<j bi,jxixj has the property that Bg = B. This is the (uniquely

determined) hyperbolic quadratic form associated with B ∈ A. The hyperbolic
quadratic form of Bf is obtained from f by applying x2

i = xi and deleting its affine
part.

A quadratic function F : Fm2 → Fn2 gives rise to a subspace BF of Am. Define

BF := {BFb
| Fb a component function of F}.

We now can give the relation of the equivalence of functions and of alternating bilinear
forms on the other hand (compare also with [30, Theorem 2]).

Lemma 7. For quadratic functions, the following conditions are equivalent:

• F and F ′ are EA-equivalent,

• BF and BF ′ are congruent (resp. equivalent under the natural action of GL(m, 2)).

Proof. We just sketch the line of argument.
The functions F and F ′ are EA-equivalent if there is an affine bijection of the form(

x
y

)
7→
(
A B
0 D

)(
x
y

)
+
(
u
v

)
which maps the set {(x, F (x))|x ∈ Fn2} to the set {(x, F ′(x))|x ∈ Fn2}.

The matrix A corresponds to the natural action of GL(m, 2). The matrix D is a basis
change for the component functions, thus leaves the space spanned by the component
functions invariant. The remaining map alters F ′ only by an affine function hence has
no influence on the alternating bilinear form.

3.2 Characterisation of quadratic APN functions

Let now F be a quadratic APN function. We want to express the APN condition in
terms of the vector space BF . The map ∆ (Equation (3)) appears, up to a constant
shift, in the definition of APN. So this is a simple translation. As B(a, a) = 0 for any a
and B ∈ A, we have by Definition 1 that a quadratic function F is APN if and only if
the (x, a) with x = a are the only simultaneous zeros of all B(a, x) ∈ BF . As

B(a, x) =
m∑
i=1

m∑
j=1

bi,jaixj =
∑
i<j

bi,j(aixj + ajxi) = 〈B,B′〉, with B′ = (aixj + ajxi)i,j ,

(4)
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we have that F is APN if and only if B⊥F contains no non-zero B′ of the form B′ =
(aixj + ajxi)i,j , hence no B′ of rank 2.

We thus get a characterisation of APN functions in terms of subspaces of alternating
bilinear forms, which is essentially the characterization used in [30,34].

Lemma 8. The following conditions are equivalent:

• F is a quadratic APN function,

• B⊥F contains no element of rank 2,

• the (rank-)distance of the subspace B⊥F ∈ A is at least 4.

3.3 Applications

Define the binary linear code CF of length 2m by the generator matrix

MF :=

 1
· · · x · · ·

F (x)

 , x ∈ Fm2 . (5)

So CF is the union of the cosets Fb + RM(1,m) of the first order Reed-Muller Code
RM(1,m), where Fb, b ∈ Fn2 , is any component function of F . Let F be a quadratic
function. It is known that the weight distribution of Fb+ RM(1,m) only depends on the
rank of ∆Fb ∈ A.

Theorem 9 ( [27, §15, Theorem 5]). Let f be a quadratic function with rank(∆f) = 2h.
The weight distribution of the coset f + RM(1,m) is

A2m−1−2m−h−1 = A2m−1+2m−h−1 = 22h and A2m−1 = 2m+1 − 22h+1.

As BF consists of the ∆-images of all component functions of F , the (rank-)distance
distribution of the subspace BF ⊆ A determines the weight distribution of the linear
code CF and therefore also the extended Walsh spectrum of F . We have the following
results.

Corollary 10. Let k := bm/2c, let a be the (rank-)distance distribution of BF , A the
distance distribution of CF , and ±WF the extended Walsh spectrum of F . Then:

Ai =


1 for i = 0, 2m,
22m+1 −

∑k
h=0 ah22h+1 for i = 2m−1,

ah22h for i = 2m−1 ± 2m−h−1, h = 1, . . . , k,
0 otherwise.

±WF = {∗ iνi ∗} with νi =


1 for i = 2m,
22m −

∑k
h=0 ah22h for i = 0,

ah22h for i = 2m−h, h = 1, . . . , k,
0 otherwise.
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We now investigate the possible (rank-)distance distributions of quadratic APN
functions F for m = n, and as well the true dimension m′ of BF (the dimension of the
code CF thus is 1 + m + m′). By construction, m′ ≤ m and we will see that m = m′.
This is known in general, i.e. also for non-quadratic APN functions [12, Corollary 1.i].
The proof of [12] relies, however, on a non-trivial coding-theoretical result. We use that
B⊥F has, by Lemma 8, (rank-)distance at least 4.

Firstly consider the case m odd. The space B⊥F has dimension
(
m
2

)
− m′. Theorem

5 shows that m′ = m and, as then the bound is met with equality, we have that B⊥F
is maximal. Theorem 6 states that every non-zero element of B⊥F has maximal possible
rank m − 1. Using Corollary 10, we see that F is AB. We thus have an alternative
argument for the the main statement of Theorem 8 of [12].

Corollary 11. Let m be odd. Every quadratic APN function F : Fm2 → Fm2 is almost
bent (AB).

Now let m = 2k. Theorem 5 shows that m′ = m− 1 or m′ = m. The case m′ = m− 1
can not appear for subspaces, for m > 2, due to a result of Cooperstein ( [14, Theorem
6.1], see the explanation in Section 3.4 below).

Alternatively we can argue that in the case m′ = m− 1, we have that B⊥F is maximal
and, again by Theorem 6, every non-zero element of B⊥F has maximal possible rank m.
Using Corollary 10, we see that F is bent. This is only possible for m− 1 = m′ ≤ m/2
(see Section 2). Thus for m > 2, we must have that m′ = m. We assume in the following
that we are in this case.

One example of quadratic functions F which always exists are the Gold functions.
The weight distribution of CF is known. We will call it the classical distribution. For
m = 2k, the classical distribution is (see [19]):

Ai =



1 for i = 0, 2m,
2(2m − 1)(2m−2 + 1) for i = 2m−1,
2m−1

3 2m+1 for i = 2m−1 ± 2k−1,
2m−1

3 2m−2 for i = 2m−1 ± 2k,
0 otherwise.

(6)

The distribution a of the alternating bilinear forms in BF is, by Corollary 10:

ah =


1 for h = 0,
2
3(2m − 1) for h = k,
1
3(2m − 1) for h = k − 1,
0 otherwise.

(7)
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3.3.1 P-Transform for APN, m = 2k even

For an n-dimensional subspace, the distribution a fulfils:

k∑
j=0

aj = 2n, a0 = 1. (8)

We transform Equation (2) for i = 1:

a′1 =
1
2n

(aP )1 :=
k∑
i=0

ai

1∑
j=0

(−1)1−j4(1−j
2 )
[
k − j
k − 1

]
4

[
k − i
j

]
4

2(m−1)·j

=
1
2n

k∑
i=0

ai(−
[

k
k − 1

]
4

+
[
k − i

1

]
4

2m−1)

=
1
2n

k∑
i=0

ai(−(4k − 1)/3 + 2m−1(4k−i − 1)/3)

(8)
=

1
2n3

(−2n(4k − 1) + 2m−1((4k − 1) +
k−1∑
i=1

ai(4k−i − 1)))

=
1
3

((2m−1−n − 1)(4k − 1) + 2m−1−n
k−1∑
i=1

ai(4k−i − 1)).

For BF , with F being a quadratic APN function, we have a′1 = 0 and n = m = 2k > 2.
The above equation simplifies to

ak−1 =
1
3

(4k − 1−
k−2∑
i=1

ai(4k−i − 1)). (9)

The value ak is minimal (by Equation (8)) if
∑k−1

i=1 ai is maximal. By Equation (9),
this is the case if ak−1 is as large as possible, hence if ai = 0 for 0 < i < k − 1. Then
ak−1 = (4k − 1)/3, hence the weight distribution is the classical distribution.

The value ak is larger than the number of elements in an (m − 1)-dimensional
subspace, thus there is always a basis of BF consisting of elements of full rank.

Let Y ⊂ BF be the set of the ak elements of rank m (i.e. the image of the set of
component functions which are bent). Assume Y contains an r-dimensional subspace
Z, but no (r + 1)-dimensional subspace. We count the points of Y \ Z. The (r + 1)-
dimensional subspaces through Z in (the m-dimensional vector space) BF partition the
points of BF \Z and thus also the points of Y not in Z. There are 2m−r−1 such (r+1)-
dimensional subspaces. Each contains at least one non-zero point not in Y , hence at
most 2r − 1 points of Y \ Z. Hence,

|Y \ Z| ≤ (2r−1 − 1)(2m−r − 1) ⇔ |Y | ≤ (2r − 1)2m−r. (10)
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Thus we have shown the following result.

Lemma 12. Let Y ⊂ BF be the set of elements of rank m. If |Y | > 2m − 2m−r, then Y
contains an (r + 1)-dimensional subspace.

Here, an ≥ 2
3(2m − 1) = 2m − 1−

∑k−1
j=0 22j > 2m − 2m−1, so we summarise:

Corollary 13.

• Y contains at least a 2-dimensional subspace,

• Y contains a basis of BF ,

• |BF \ Y | ≥ 2m/2.

The last item is again due to the already mentioned result of Cooperstein, resp. due
to the non-existence of bent functions with n > m/2.

An other way to get the first item is by observing that a cap in PG(Bf ) = PG(m−1, 2)
contains at most 2m−1 points, hence Y is no cap, thus contains a (projective) line.

3.3.2 Example: m = 6

As an example, we have a look at the possible rank distributions of BF , for F : F6
2 → F6

2

being a quadratic APN function. Equation (9) specialises to: 21 = 5a1 + a2. Hence,
choosing 0 ≤ a1 < 5 leads to the following possible rank distributions a:

(1, 0, 21, 42), (1, 1, 16, 46), (1, 2, 11, 50), (1, 3, 6, 54), (1, 4, 1, 58).

From the third distribution on, a 3-dimensional subspace is guaranteed. The fifth dis-
tribution cannot occur by Corollary 13. Only the first two occur as distributions of one
of the actual 13 non-isomorphic BF .

3.4 A link with
∧2 Fm2 and the line Grassmannian

There is a well-known equivalence between alternating bilinear forms on V and the
wedge- or external-product

∧2 V . In general,
∧k V is linked with the Grassmannians.

Quadratic APN functions appear naturally, although not under this name, in this setting
as we will see.

We refer to [28] for a more extensive short introduction on this topic. More details
and proofs can be found in text books such as [29]. For the Grassmannians, see
also [26, Chapter 24].

Let V be an m-dimensional vector space over F. An element u ∈
∧k V is called

decomposable if there exist u1, . . . , uk ∈ V such that u = u1 ∧ · · · ∧ uk (i.e. if u can be
written as a pure wedge-product). We have u1 ∧ · · · ∧ uk = 0 if and only if u1, . . . , uk
are linearly dependent.

11



Let Gr(k, V ), resp. Gr(k,m), denote the set of all k-dimensional subspaces of an
m-dimensional vector space V . Let U,U ′ ∈ Gr(k,m) be the subspaces generated by
u1, . . . , uk, resp. u′1, . . . , u

′
k. Then U = U ′ if and only if u1 ∧ · · · ∧ uk = λ(u′1 ∧ · · · ∧ u′k)

for some λ ∈ F.
As a consequence, we have an injective embedding γ of Gr(k, V ) in the projective

space with underlying vector space
∧k V :

γ : Gr(k, V )→ PG(
k∧
V ).

Thus, γ(Gr(k,m)) consists of the decomposable elements of PG(
∧k V ) and is a quadratic

variety. The sets Gr(k,m) are called the Grassmannians and γ(Gr(k,m)) the Grass-
mannian variety. As the 2-dimensional subspaces correspond to the projective lines,
γ(Gr(2,m)) is frequently referred to as the line-Grassmannian. A subspace U is called
an external subspace or skew to G if U ∩G is zero (or empty if using the projective
notation).

The general linear group GL(V ) induces a natural action on
∧k V by

u1 ∧ · · · ∧ uk 7→ g(u1) ∧ · · · ∧ g(uk). The induced operation is a subgroup of the
group of collineations of PG(

∧k V ), stabilising the Grassmannian variety.

As mentioned, there is a well-known equivalence between alternating bilinear forms
on V and

∧2 V . We therefore also can speak of the rank of elements in
∧2 V . The

decomposable elements of
∧2 V are the rank-2-elements. For example, the rank 2 form

B′ = (aixj + ajxi)i,j appearing in the characterising Equation (4) corresponds to the
pure element a ∧ x.

The natural action is a transitive operation on the elements of the same rank of
∧2 V .

The line-Grassmannian consists of the decomposable elements in
∧2 V , thus the Lem-

mata 7 and 8 give, by identifying B⊥F with some (
(
m
2

)
−n)-dimensional subspace of

∧2 Fm2
the following alternative characterisations of quadratic APN functions.

Corollary 14. The following objects are equivalent:

• a quadratic APN function F : Fm2 → Fn2 ,

• an (
(
m
2

)
−n)-dimensional subspace U ∈

∧2 Fm2 containing no decomposable element,

• an (
(
m
2

)
− n − 1)-dimensional subspace [U ] ∈ PG(

∧2 Fm2 ), skew to the line-
Grassmannian.

The EA-equivalence classes of quadratic APN functions are in one-to-one correspon-
dence with the orbits, under the natural action of GL(m, 2), of the (

(
m
2

)
−n)-dimensional

subspaces in
∧2 Fm2 (resp. (

(
m
2

)
−n−1)-dimensional subspaces in PG(

∧2 Fm2 )), fulfilling
the above conditions.

Cooperstein [14] investigates subspaces U ∈
∧2 Fmq skew to the sets of all elements

with bounded rank. In [14, Theorem 6.1], it is stated that, for m > 2, subspaces skew

12



to the set of elements of rank 2 (so the APN case for q = 2) have dimension at most(
m
2

)
−m. This strengthens Theorem 5 for even m under the stronger assumption that

the skew set is a subspace and is the alternative argument mentioned in the discussion
on the true dimension of the image space of an APN function above.

Also an example for such an extremal subspace is given. By comparing the alternative
geometrical construction, given in [15], with the remarks in the appendix of [21], it can
be seen that this example corresponds, for q = 2, to Gold’s APN function x3.

References

[1] J. Bierbrauer. A family of crooked functions. Designs, Codes and Cryptography,
50:235–241, 2009.

[2] J. Bierbrauer. New semifields, PN and APN functions. Designs, Codes and Cryp-
tography, 54(3):189–200, 2010.

[3] C. Bracken, E. Byrne, N. Markin, and G. McGuire. A few more quadratic APN
functions. http: // arxiv. org/ pdf/ 0804. 4799 , 2008.

[4] C. Bracken, E. Byrne, N. Markin, and G. McGuire. New families of quadratic almost
perfect nonlinear trinomials and multinomials. Finite Fields and Their Applications,
14(3):703–714, 2008.

[5] M. Brinkmann and G. Leander. On the classification of APN functions up to
dimension five. Designs, Codes and Cryptography, 49(1-3):273–288, 2005.

[6] K. A. Browning, J. F. Dillon, R. E. Kibler, and M. T. McQuistan. APN polynomials
and related codes. Journal of Combinatorics, Information and System Sciences,
34(1-4):135–159, 2009.

[7] L. Budaghyan and C. Carlet. Classes of Quadratic APN trinomials and Hexanomials
and Related Structures. IEEE Transactions on Information Theory, 54(8):2354–
2357, 2008.

[8] L. Budaghyan, C. Carlet, and G. Leander. Two classes of quadratic APN bino-
mials inequivalent to power functions. IEEE Transactions on Information Theory,
54(9):4218–4229, 2008.

[9] L. Budaghyan, C. Carlet, and G. Leander. Constructing new APN functions from
known ones. Finite Fields and Their Applications, 15(2):150–159, 2009.

[10] C. Carlet. Boolean Methods and Models, chapter Boolean functions for cryptography
and error correcting codes. Cambridge University Press, to appear.

[11] C. Carlet. Boolean Methods and Models, chapter Vectorial Boolean functions for
cryptography. Cambridge University Press, to appear.

13

http://arxiv.org/pdf/0804.4799


[12] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs, Codes and Cryptography, 15(2):125–
156, 1998.

[13] F. Chabaud and S. Vaudenay. Links between differential and linear cryptanalysis.
In A. D. Santis, editor, Advances in Cryptology – EUROCRYPT 94, volume 950
of Lecture Notes in Computer Science, pages 356–365, New York, 1995. Springer-
Verlag.

[14] B. N. Cooperstein. External flats to varieties in PG(
∧2(V )) over finite fields. Ge-

ometriae Dedicata, 69(3):223–235, 1998.

[15] A. Cossidente and A. Siciliano. On tangent spaces and external flats to Grass-
mannians of lines over finite fields. Linear Algebra and its Applications, 347:81–89,
2002.

[16] R. S. Coulter and M. Henderson. A class of functions and their application in con-
structing semi-biplanes and association schemes. Discrete Mathematics, 202(1):21–
32, 1999.

[17] P. Delsarte and J. M. Goethals. Alternating bilinear forms over GF(q). Journal of
Combinatorial Theory. Series A, pages 26–50, 1975.

[18] J. F. Dillon. slides from talk given at ”Polynomials over Finite Fields and Applica-
tions”, held at Banff International Research Station, 2006.

[19] J. F. Dillon and H. Dobbertin. New cyclic difference sets with Singer parameters.
Finite Fields and Their Applications, 10:342–389, 2004.

[20] Y. Edel. On quadratic APN functions and dimensional dual hyperovals. Designs,
Codes and Cryptography, 57(1):35–44, 2010.

[21] Y. Edel. On some representations of quadratic APN functions and dimensional dual
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