
ZERO-SUM PROBLEMS IN FINITE ABELIAN GROUPS

AND AFFINE CAPS

YVES EDEL, CHRISTIAN ELSHOLTZ,
ALFRED GEROLDINGER, SILKE KUBERTIN, LAURENCE RACKHAM

Abstract. For a �nite abelian group G let s(G) denote the smallest integer l such that every
sequence S over G of length jSj � l has a zero-sum subsequence of length exp(G). We derive
new upper and lower bounds for s(G) and all our bounds are sharp for special types of groups.
The results are not restricted to groups G of the form G = Cr

n but they respect the structure of
the group. In particular, we show s(C4

n) � 20n� 19 for all odd n which is sharp if n is a power
of 3. Moreover, we investigate the relationship between extremal sequences and maximal caps
in �nite geometry.

1. Introduction and Main Results

Let G be a �nite abelian group. We denote by s(G) (or �(G) respectively) the smallest integer
l 2 N such that every sequence S over G of length jSj � l has a zero-sum subsequence T of length
jT j = exp(G) (or a zero-sum subsequence T of length jT j 2 [1; exp(G)] respectively); for details
on terminology and notations we refer to Section 2. The investigation of these invariants has a
long tradition in combinatorial number theory as well as in �nite geometry (for an overview see
[32, Section 5.7] and Section 5). As already pointed out by H. Harborth, s(Cr

n) is the smallest
integer l such that every set of l lattice points in the r-dimensional euclidean space contains n
elements which have a centroid with integral coordinates. This geometric interpretation was a
main reason why emphasis was formerly placed on groups of the form Cr

n. In the meantime new
applications (for example in the theory of non-unique factorizations, see [32]) caused the need
for investigations of the invariants s(G) and �(G) for general �nite abelian groups.
In the present paper such investigations are carried out for the �rst time in a systematic way.

In Theorems A and B we brie
y summarize the present state of knowledge, and then we discuss
the new results.
For �nite abelian groups of rank at most two, both invariants �(G) and s(G) are completely

determined.

Theorem A. Let G = Cn1 � Cn2 with 1 � n1 j n2. Then

�(G) = 2n1 + n2 � 2 and s(G) = 2n1 + 2n2 � 3 :

A proof of Theorem A was recently given in [32, Theorem 5.8.3]. It contains the result by
C. Reiher, which states that s(Cp�Cp) = 4p� 3 for all p 2 P (see [56] and [59]), and it contains
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the Theorem of Erd}os-Ginzburg-Ziv (set n1 = 1; see [19] for the original paper; for various
proofs see [1] and [51, Section 2.4]).

From now on we consider �nite abelian groups of rank larger than two, and we start with the
discussion of lower bounds.

Theorem B. Let n; r 2 N.

1. �(Cr
n) � (2r � 1)(n� 1) + 1 and s(Cr

n) � 2r(n� 1) + 1.

2. If n is odd, then there exists a sequence T 2 F(C3
n) of length jT j = 9 such that Tn�1

has no zero-sum subsequence of length n. In particular, we have �(C3
n) � 8n � 7 and

s(C3
n) � 9n� 8.

The �rst result is due to H. Harborth (see [34, Hilfssatz 1] or Proposition 3.1 for a general-
ization) and the second due to C. Elsholtz ([17], see also Lemma 3.4 for a simpler alternative
proof). Note that in these papers only the result for s(Cr

n) is formulated but the proofs and
Lemma 2.3.2 (below) show the lower bound for �(Cr

n).

In [27] W. Gao and R. Thangadurai conjecture that the lower bounds given in Theorem B.2
are the precise values, that is

�(C3
n) = 8n� 7 and s(C3

n) = 9n� 8 for all odd n 2 N�3

(see also Corollary 4.5).

Before discussing our new results we consider the inverse problems associated to the invariants
s(G) and �(G). In other words, we study the structure of sequences S 2 F(G) of length
jSj = s(G)� 1 (or jSj = �(G)� 1 respectively) which have no zero-sum subsequence T of length
jT j = exp(G) (or no zero-sum subsequence T of length jT j 2 [1; exp(G)] respectively). These
problems were �rst studied for groups of the form G = Cn�Cn by P. van Emde Boas (see [18]).
Suppose that G = Cr

n with n � 2 and r 2 N. It is generally believed that G has the following
two properties:

Property C. Every sequence S 2 F(G) of length jSj = �(G)� 1 which has no short zero-sum
subsequence has the form S = Tn�1 for some sequence T 2 F(G).

Property D. Every sequence S 2 F(G) of length jSj = s(G) � 1 which has no zero-sum
subsequence of length n has the form S = Tn�1 for some sequence T 2 F(G).

If n � 2 and r = 1, then Property C holds (trivially) and so does Property D, as was proved
independently by several authors (see [54], [4], [24, Theorem 1]). For a detailed discussion of
these two properties in the case r = 2 see [26] and in the case r � 3 see [28]. Clearly, if Property
D holds, then n�1 divides s(Cr

n)�1 and, by Lemma 2.3.2 (below) we have �(Cr
n) = s(Cr

n)�n+1.

In Theorem 1.1 we present new lower bounds for �(C4
n) and for s(C4

n), and we conjecture that
these lower bounds give the precise value for all odd n 2 N�3 (see Corollary 4.5). The sequence
S we construct for the proof of Theorem 1.1 has the form S = Tn�1 for some T 2 F(Cr

n),
supporting the conjecture that Property D holds for C4

n. The proof of Theorem 1.1 is given in
Section 3, and subsequently we show how to lift the bounds of Theorem 1.1 and Theorem B to
groups of higher rank (see Proposition 3.5 and Corollary 3.6).
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Theorem 1.1. Let n be an odd integer with n � 3. Then there exists a sequence T 2 F(C4
n) of

length jT j = 20 such that Tn�1 has no zero-sum subsequence of length n. In particular, we have

�(C4
n) � 19n� 18 and s(C4

n) � 20n� 19.

Now we discuss upper bounds. W. Gao and Y.X. Yang proved that s(G) � jGj+ exp(G)� 1
for every �nite abelian group G (see [30] for the original paper (in Chinese) or [32, Theorem
5.7.4]). Upper bounds for groups G of the form G = Cr

n were given by N. Alon, M. Dubiner and
recently by S. Kubertin (see Remarks 3.7).

We derive new upper bounds both for �(G) and s(G). The �rst (Theorem 1.2) rests on upper
bounds for s(Cr

p) for primes p 2 P dividing exp(G), and the second (Theorem 1.3) is valid for
groups with large exponent (as usual, D(G) denotes the Davenport constant of G, see De�nition
2.1 and the subsequent remarks).

Theorem 1.2. Let G = Cn1 � � � � �Cnr with r = r(G) and 1 < n1 j : : : j nr. Let c1; : : : ; cr 2 N
such that for all primes p 2 P with p j nr and all i 2 [1; r] we have s(Ci

p) � ci(p� 1) + 1. Then

s(G) �
rX

i=1

(cr+1�i � cr�i)ni � cr + 1 where c0 = 0 :

In particular, if n1 = : : : = nr = n, then s(G) � cr(n� 1) + 1.

Theorem 1.3. Let G = H�Cn be a �nite abelian group where H � G is a subgroup, exp(G) =
n � 2 and D(G) � 2n� 1.

1. If D(G� Cn) � 3n� 1, then 2
�
D(H)� 1

�
+ n � �(G) � D(G� Cn).

2. If G is a p-group for some odd prime p, then

D(G� Cn) + D(H)� 1 � s(G) � D(G� Cn) + n :

The proofs of the Theorems 1.2 and 1.3 will be given in Section 4. Theorem 1.2 is proved by
the induction method, and provides the best known upper bound for groups G which are not of
the form G = Cr

n. The main part of Theorem 1.3 is the upper bound in 1.3.2 which generalizes
(for odd primes) recent results of W. Gao and J. Zhou (see [31, Theorem 1.5], and also [23,
Proposition 3.1]). Its proof uses the polynomial method, �rst developed by L. R�onyai and later
generalized by Z.W. Sun and S. Kubertin (see [57], [61], [45]).
After the proof of Theorem 1.3 we present special types of groups for which the lower and

upper bounds derived in this paper coincide (see Corollaries 4.4, 4.5 and 4.6). The quality of the
bounds in Theorem 1.3 can immediately be seen by considering the following most simple case.
If (in Theorem 1.3) H = Cm for some m dividing n, then 2

�
D(H)� 1

�
+n = 2m+n� 2 = �(G)

(see Theorem A). Moreover, if H = Cn and n is a prime power, then (again by Theorem A)
�(G) = 3n� 2 = D(G�Cn) and s(G) = 4n� 3 = D(G�Cn) + n� 1 = D(G�Cn) +D(H)� 1.
In Section 5 we discuss further applications of the invariants s(G) and �(G). Special em-

phasis is given to the role of the invariant s(Cr
n) in �nite geometry and problems on arithmetic

progressions. We give a detailed discussion of the history of the associated geometric problems.
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2. Notations and some preparatory results

Let N denote the set of positive integers, P � N the set of all prime numbers and let N0 =
N [ f0g. For integers a; b 2 Z we set [a; b] = fx 2 Z j a � x � bg, and for c 2 N let
N�c = N n [1; c� 1]. Throughout, all abelian groups will be written additively and for n 2 N let
Cn denote a cyclic group with n elements. For p 2 P let Fp = Z=pZ, and for a power q of p let
Fq denote a �eld with q elements such that Fq � Fp.

Let G be an additive �nite abelian group. If jGj > 1, then there are uniquely determined
integers r; n1; : : : ; nr with 1 < n1 j : : : j nr such that G �= Cn1 � : : :�Cnr . Then r = r(G) is the
rank of G, and nr = exp(G) is the exponent of G. An r-tuple (e1; : : : ; er) in G n f0g is called a
basis of G if G = he1i � : : :� heri. For n 2 N we set nG = fng j g 2 Gg.

We denote by F(G) the free (abelian, multiplicative) monoid with basis G. An element
S 2 F(G) is called a sequence over G and will be written in the form

S =
Y
g2G

gvg(S) =
lY

i=1

gi 2 F(G) ;

where vg(S) is called the multiplicity of g in S. A sequence S0 2 F(G) is called a subsequence

of S if there exists some S00 2 F(G) such that S = S0S00 (equivalently, S0 j S or vg(S
0) � vg(S)

for every g 2 G). If this holds, then S00 = S0�1S. As usual,

�(S) =
X
g2G

vg(S)g =
lX

i=1

gi 2 G

denotes the sum of S,
supp(S) = fg 2 G j vg(S) > 0g � G

is the support of S and

jSj =
X
g2G

vg(S) = l 2 N0

denotes the length of S. Clearly, jSj = 0 if and only if S = 1 is the empty sequence. We say
that the sequence S is

� a zero-sum sequence (resp. has sum zero) if �(S) = 0.

� short (in G) if jSj 2 [1; exp(G)].

� squarefree if vg(S) � 1 for all g 2 G.

De�nition 2.1. We denote by

� D(G) the smallest integer l 2 N such that every sequence S 2 F(G) of length jSj � l
has a zero-sum subsequence. D(G) is called the Davenport constant of G.

� �(G) the smallest integer l 2 N such that every sequence S 2 F(G) of length jSj � l has
a short zero-sum subsequence.

� s(G) the smallest integer l 2 N such that every sequence S 2 F(G) of length jSj � l has
a zero-sum subsequence T of length jT j = exp(G).

� g(G) the smallest integer l 2 N such that every squarefree sequence S 2 F(G) of length
jSj � l has a zero-sum subsequence T of length jT j = exp(G).
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A thorough treatment of the Davenport constant, a central invariant in zero-sum theory, may
be found in [32, Chapter 5], and for some recent results we refer to [11]. Apart from basic
properties we use the following classical results on D(G) (originally due to D. Kruyswijk and
J.E. Olson): If G = Cn1 � � � � � Cnr , where r = r(G) and 1 < n1 j : : : j nr, then

1 +
rX

i=1

(ni � 1) � D(G) ;

and equality holds if either r � 2 or G is a p-group (see [32, Theorems 5.5.9 and 5.8.3]).

Let ' : G! G0 be a map of abelian groups. Then there is a unique homomorphism ' : F(G)!
F(G0) with ' j G = '. We simply write ' instead of ', whence if S = g1 � : : : � gl 2 F(G), then
'(S) = '(g1) � : : : � '(gl) 2 F(G

0).

We start with a simple observation which will be used tacitly throughout the paper. Then
we continue with a lemma relating the invariants �(G), s(G) and g(G). In the Sections 3 and 4
we concentrate on �(G) and s(G) and in Section 5 we mainly deal with g(G).

Lemma 2.2. Let G be a �nite abelian group with exp(G) = n � 2, g 2 G, ' : G ! G an

automorphism and f : G! G a map de�ned by f(x) = '(x)� g for every x 2 G.

1. A sequence S 2 F(G) has a zero-sum subsequence of length n if and only if f(S) has a

zero-sum subsequence of length n.

2. Let S = hn�1T 2 F(G) with h 2 G, f(h) = 0 and T 2 F(G). Then S has a zero-sum

subsequence of length n if and only if f(T ) has a short zero-sum subsequence.

Proof. 1. Let S = g1 � : : : � gl 2 F(G) and T =
Q

i2I gi be a subsequence of S where I � [1; l]
with jIj = n. Then

�(f(T )) =
X
i2I

�
'(gi)� g

�
= '(�(T ))

whence �(T ) = 0 if and only if �(f(T )) = 0.

2. By 1., S has a zero-sum subsequence of length n if and only if f(S) has a zero-sum
subsequence of length n. Since f(S) = 0n�1f(T ), the assertion follows. �

Lemma 2.3. Let G be a �nite abelian group with exp(G) = n � 2, S 2 F(G) a sequence which

has no zero-sum subsequence of length n and h = maxfvg(S) j g 2 Gg.

1. D(G) � �(G) � s(G)� n+ 1.

2. If h = n � 1, then �(G) � jSj � n + 2. In particular, if jSj = s(G) � 1, then �(G) =
s(G)� n+ 1.

3. g(G) � s(G) �
�
g(G) � 1

�
(n � 1) + 1. If G = Cr

n, with n � 2 and r 2 N, and s(G) =�
g(G)� 1

�
(n� 1) + 1, then G has Property D.

4. If H is a �nite abelian group with jHj � h and f : [1; h]! H an injective map, thenY
g2G

vg(S)Y
i=1

(g + f(i)) 2 F(G�H)

is a squarefree sequence which has no zero-sum subsequence of length n. In particular, if

exp(H) j n then g(G�H) � s(G), and g(Cr+1
n ) � s(Cr

n).
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Proof. 1. Straightforward (for a detailed proof see [32, Lemma 5.7.2]).

2. Let S = gn�1T , with g 2 G and T 2 F(G), and consider the map f : G ! G de�ned by
f(x) = x � g for all x 2 G. By Lemma 2.2.2, f(T ) has no short zero-sum subsequence whence
�(G) � jf(T )j+ 1 = jSj � n+ 2. If jSj = s(G)� 1, then �(G) � s(G)� n+ 1 whence 1. implies
that �(G) = s(G)� exp(G) + 1.

3. The �rst inequality follows by de�nition. Let

U = gk11 � : : : � gkll 2 F(G); where l; k1; : : : ; kl 2 N and g1; : : : ; gl 2 G are distinct;

be a sequence of length jU j = s(G)� 1 which has no zero-sum subsequence of length n. Clearly,
T = g1 � : : : � gl is a squarefree sequence which has no zero-sum subsequence of length n whence
l � g(G)� 1. Therefore, we obtain that

s(G)� 1 = jU j =
lX

i=1

ki � l(n� 1) �
�
g(G)� 1

�
(n� 1) :

Furthermore, if G = Cr
n and equality holds, then k1 = : : : = kl = n� 1 whence G has Property

D.

4. By construction, the given sequence has all asserted properties. �

All sequences S constructed in this paper which have no zero-sum subsequence of length
exp(G) have the additional property of Lemma 2.3.2. (that is, they have some element with
multiplicity exp(G) � 1) whence we always get �(G) � jSj � exp(G) + 2. W. Gao conjectured
that for all �nite abelian groups G we have �(G) = s(G)� exp(G)+ 1. Among others this holds
true for all groups G with r(G) � 2 (see Theorem A) and for all groups G with exp(G) � 4 (see
[25]). Let G = Cr

n with n � 2 and r 2 N and consider the inequality s(G) �
�
g(G)�1

�
(n�1)+1.

Then equality holds for n = 2 (trivial) and for n = 3 (see [34, Hilfssatz 3]). If p is a prime with
p � 67, then g(Cp � Cp) = s(Cp) = 2p� 1 (see Theorem A and [29]).

3. Lower bounds

All lower bounds for the invariants �(G) and s(G) are established by explicit constructions of
sequences S 2 F(G) having no zero-sum subsequences with the required properties. The �rst
two results will be used several times whereas the speci�c preparations for the proof of Theorem
1.1 start from Lemma 3.3 on. A geometric interpretation of the sequences given in Lemma 3.4
and in Theorem 1.1 will be o�ered after Lemma 5.4. Note that in the special setting of p-groups
the bounds given in Lemma 3.2 were �rst proved in [31, Theorem 1.5].

Proposition 3.1. Let G = Cn1 � � � � � Cnr , where r = r(G) and 1 < n1 j : : : j nr, and let

(e1; : : : ; er) be a basis of G with ord(ei) = ni for every i 2 [1; r]. For a subset I � [1; r] we set

eI =
P

i2I ei (in particular, e; = 0).

1. Let

U =
rY

k=1

Y
I�[k+1;r]

(ek + eI)
nk�1 2 F(G) :

Then the following statements are equivalent :
(a) U has no short zero-sum subsequence.
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(b) r = 1 or (r � 2 and n2 = nr).

2. Let H be a �nite abelian group with exp(H) = n being a multiple of nr and T 2 F(H)
such that Tn�1 has no zero-sum subsequence of length n. Then the sequence

S =
Y
g2T

 
gn�1

rY
i=1

(g + ei)
ni�1

!
2 F(G�H)

has no zero-sum subsequence of length n, and hence

s(G�H) � �(G�H) + n� 1 � 1 + jT j
�
n� 1 +

rX
i=1

(ni � 1)
�
:

Furthermore, if m 2 N and I1; : : : ; Im � [1; r] are pairwise disjoint sets with
P

i2I�
(ni �

1) � n for all � 2 [1;m], then

S = S
Y
g2T

mY
�=1

(g + eI�) 2 F(G�H)

has no zero-sum subsequence of length n.

3. If G = G� Ck
n with k; n 2 N and nr j n, then

s(G) � �(G) + n� 1 � 1 + 2k
�
n� 1 +

rX
i=1

(ni � 1)
�
:

Proof. 1. (a) ) (b) If r � 2, then there is nothing to show. If r � 3 and n2 < nr, then

U 0 = enr�n2�1r (e2 + er)
n2�n1+1(e1 + er)(e1 + e2 + er)

n1�1

is a short zero-sum subsequence of U , a contradiction.

(b) ) (a) If r = 1, then the assertion is clear. Suppose that r � 2 and n2 = nr = n. Then

U =
Y

I�[2;r]

(e1 + eI)
n1�1

Y
;6=I�[2;r]

en�1I 2 F(G) ;

and we consider a zero-sum subsequence

U 0 =
kY

�=1

(e1 + eI� )
lY

�=k+1

eI�

of U with 0 � k � l � n, subsets I1; : : : ; Ik � [2; r] and non-empty subsets Ik+1; : : : ; Il � [2; r].
We have to show that jU 0j = l = 0. Assume to the contrary that l � 1. Since ve1(U

0) � ve1(U) =
n1 � 1, there exists some � 2 [1; l] such that I� is non-empty. Let i 2 I� and

� = jfj 2 [1; l] j i 2 Ijgj :

Since � � 0 mod n and 1 � � � l � n, it follows that � = l = n. Since U 0 has sum zero, we
infer that I1 = : : : = In whence

U 0 = (e1 + eI1)
ken�kI1

:

Then k � 0 mod n1 and k � ve1+eI1 (U) = n1 � 1 imply that k = 0 whence U 0 = enI1 is a
subsequence of U , a contradiction.



8 Y. EDEL, C. ELSHOLTZ, A. GEROLDINGER, S. KUBERTIN, L. RACKHAM

2. Assume to the contrary that S has a zero-sum subsequence S0 of length n. Since every
zero-sum subsequence of Tm, for any m � n, of length n has the form gn for some g 2 supp(T ),
the sequence S0 has the form

S0 = glg
rY

i=1

(g + ei)
li ;

with g 2 supp(T ), lg 2 [0; n � 1] and li 2 [0; ni � 1] for all i 2 [1; r]. But lg < n, implies that
there is some i 2 [1; r] with li 2 [1; ni � 1] and hence �(S0) 6= 0, a contradiction. Now the lower
bounds for s(G�H) and �(G�H) follow from Lemma 2.3.

If S has a zero-sum subsequence S
0
of length n, then

S
0
= glg

rY
i=1

(g + ei)
li

mY
�=1

(g + eI�)
�� ;

with �� 2 f0; 1g and all other parameters as before. Since S
0
is not a subsequence of S, there is

some � 2 [1;m] with �� = 1. This implies that S
0
must contain the sequence

S
00
= (g + eI�)

Y
i2I�

(g + ei)
ni�1 ;

and hence n = jS
0
j � jS

00
j � 1 +

P
i2I�

(ni � 1) � n+ 1, a contradiction.

3. Applying 1. to the group Ck
n we obtain a sequence T = 0T 0 of length jT j = 2k such that

U = T 0n�1 has no short zero-sum subsequence and hence Tn�1 has no zero-sum subsequence of
length n. Then 2. gives us a sequence S 2 F(G) of length jSj = jT j(n�1+

Pr
i=1(ni�1)) which

has no zero-sum subsequence of length n. Now the assertion follows from Lemma 2.3. �

Lemma 3.2. Let G be a �nite abelian group with exp(G) = n � 2 and G = H � hei where

H � G is a subgroup and e 2 G with ord(e) = n. Then

�(G) � 2
�
D(H)� 1

�
+ n and s(G) � 2

�
D(H)� 1

�
+ 2n� 1 :

Proof. If T = g1 � : : : � gl 2 F(H) is a sequence of length jT j = l = D(H) � 1 which has no
zero-sum subsequence, then obviously the sequence

S = en�1
lY

i=1

gi

lY
i=1

(gi + e) 2 F(G)

has no short zero-sum subsequence. This implies that

�(G) � jSj+ 1 = 2
�
D(H)� 1

�
+ n ;

and by Lemma 2.3.1 we have s(G) � 2
�
D(H)� 1

�
+ 2n� 1. �

For the rest of this section we introduce the following notation. Let G = Cr
n, with n � 2

and r 2 N, and let (e1; : : : ; er) be a basis of G. In order to stress the geometric aspect of the
theory we write the elements g 2 G as coordinate vectors, this means for an element g 2 G with
g = a1e1 + : : :+ arer we set 0B@a1...

ar

1CA = a1e1 + : : : arer = g
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where a1; : : : ; ar 2 [0; n�1]. For i 2 [1; r] we call ai the i-th coordinate of g and a1+ : : :+ar 2 N0

the weight of g.

Lemma 3.3. Let G = C2
n with n � 3 odd,

V2 =

�
0
0

�n�1

S with S =

�
0
2

�n�1�
2
0

�n�1�
2
2

�n�1

and

W2 =

�
0
1

�n�1�
1
0

�n�1�
1
2

�n�1�
2
1

�n�1

:

Then neither V2 nor W2 has a zero-sum subsequence of length n.

Proof. Let f : G! G be de�ned by�
a
b

�
7!

�
n+1
2

n+1
2

n�1
2

n+1
2

��
a
b

�
+

�
0
1

�
:

Then it is easy to check that f(V2) = W2. By Proposition 3.1.1, S has no short zero-sum
subsequence. Thus Lemma 2.2 implies that V2 and f(V2) have no zero-sum subsequence of
length n. �

Lemma 3.4. Let G = C3
n with n � 3 odd,

V3 = ~V n�1
3 with ~V3 =

0@10
0

1A0@10
2

1A0@12
0

1A0@12
2

1A0@20
1

1A0@21
0

1A0@21
2

1A0@22
1

1A0@31
1

1A
and

W3 = ~Wn�1
3 with ~W3 =

0@20
0

1A0@20
2

1A0@22
0

1A0@22
2

1A0@10
1

1A0@11
0

1A0@11
2

1A0@12
1

1A0@01
1

1A :

Then neither V3 nor W3 has a zero-sum subsequence of length n. In particular, we have �(C3
n) �

8n� 7 and s(C3
n) � 9n� 8.

Proof. Let f : G! G be de�ned by0@ab
c

1A 7!

0@�1 0 0
0 1 0
0 0 1

1A0@ab
c

1A+

0@30
0

1A :

Then it is easy to verify that f(V3) =W3. Thus by Lemma 2.2.1 and by Lemma 2.3.2 it su�ces
to prove that V3 has no zero-sum subsequence of length n. Assume to the contrary that there
is a zero-sum subsequence V 0

3 of V3 of length n.
We �rst suppose V 0

3 contains only those elements of V3 that have �rst coordinate 1 or 2.
Then the sum of the �rst coordinates of the elements of V 0

3 is n or 2n. This is only possible if
all the elements of V 0

3 have the same entry in the �rst coordinate. If all elements of V 0
3 have

�rst coordinate 1, then the sequence formed by the remaining two coordinates is a zero-sum
subsequence of V2 of length n, a contradiction to Lemma 3.3. Similarly, if all elements of V 0

3
have �rst coordinate 2, then the sequence formed by the remaining two coordinates is a zero-sum
subsequence of W2 of length n, a contradiction to Lemma 3.3.
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Thus V 0
3 must contain the element g =

0@31
1

1A : Since the second coordinate of g equals 1,

the sum of the second coordinates of the elements of V 0
3 must be n. The same is true for the

third coordinate. Since the �rst coordinate of g equals 3, the sum of the �rst coordinates of
the elements of V 0

3 must be 2n. Thus the sum of all coordinates of the n elements of V 0
3 equals

n + n + 2n which is even. On the other hand, since all elements of V3 have odd weight, this is
the sum of an odd number of odd weights whence it should be odd, a contradiction. �

Proof of Theorem 1.1. Let G = C4
n with n � 3 odd. We set

T (n) = T =

0BB@
1
1
0
0

1CCA
0BB@
1
1
0
2

1CCA
0BB@
1
1
2
0

1CCA
0BB@
1
1
2
2

1CCA
0BB@
1
2
0
1

1CCA
0BB@
1
2
1
0

1CCA
0BB@
1
2
1
2

1CCA
0BB@
1
2
2
1

1CCA
0BB@
1
3
1
1

1CCA
0BB@
2
2
0
0

1CCA
0BB@
2
2
0
2

1CCA
0BB@
2
2
2
0

1CCA
0BB@
2
2
2
2

1CCA
0BB@
2
1
0
1

1CCA
0BB@
2
1
1
0

1CCA
0BB@
2
1
1
2

1CCA
0BB@
2
1
2
1

1CCA
0BB@
2
0
1
1

1CCA
0BB@
0
2
1
1

1CCA
0BB@
3
1
1
1

1CCA
and assert that V4 = Tn�1 has no zero-sum subsequence of length n. Then s(G) � jSj + 1 =
20n� 19, and Lemma 2.3.2 implies that �(G) � 19n� 18. Assume to the contrary that there is
a zero-sum subsequence V 0

4 of V4 of length n. We consider the elements

g =

0BB@
0
2
1
1

1CCA ; h =

0BB@
3
1
1
1

1CCA ; g0 =

0BB@
2
0
1
1

1CCA and h0 =

0BB@
1
3
1
1

1CCA :

We �rst suppose that vg(V
0
4) + vh(V

0
4) = 0 whence V 0

4 contains only those elements of V4 that
have �rst coordinate 1 or 2. Then the sum of the �rst coordinates of the elements of V 0

4 is n or
2n. This is only possible if all the elements of V 0

4 have the same entry in the �rst coordinate.
If all elements of V 0

4 have �rst coordinate 1, then the sequence formed by the remaining three
coordinates is a zero-sum subsequence of V3 of length n, a contradiction to Lemma 3.4. Similarly,
if all elements of V 0

4 have �rst coordinate 2, then the sequence formed by the remaining three
coordinates is a zero-sum subsequence of W3 of length n, a contradiction to Lemma 3.4.

Thus it follows that vg(V
0
4) + vh(V

0
4) > 0. Since both g and h have a 1 in the third coordinate

and all other elements of V4 have a 0 a 1 or a 2 in the third coordinate, the sum of the third
coordinates of the elements of V 0

4 must be n. The same is true for the fourth coordinate. The
sum of the �rst coordinates of the elements of V 0

4 can neither be 0 nor 3n whence it must be
either n or 2n. The same is true for the second coordinate. We distinguish three cases.

CASE 1 : The sum of the �rst coordinates and the sum of the second coordinates are both n.
Since for all elements of V4 the sum of the �rst and the second coordinate is at least 2,

V 0
4 can only contain elements whose �rst two coordinates sum to exactly 2. This implies that

vg(V
0
4) = vg0(V

0
4). Any other elements of V 0

4 have an even number in the third coordinate. Thus
the sum of the third coordinates is even, contradicting n is odd.
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CASE 2 : The sum of the �rst coordinates and the sum of the second coordinates are both
2n.
Since for all elements of V4 the sum of the �rst and the second coordinate is at most 4,

V 0
4 can only contain elements whose �rst two coordinates sum to exactly 4. This implies that

vh(V
0
4) = vh0(V

0
4). Any other elements of V 0

4 have an even number in the third coordinate. Thus
the sum of the third coordinates is even, contradicting n is odd.

CASE 3 : The sum of the �rst coordinates equals n and the sum of the second coordinates
equals 2n, or conversely.
Then the sum of all coordinates of the n elements of V 0

4 equals n+ n+ n+ 2n = 5n, which is
odd. On the other hand, since all elements of V4 have even weight, the sum of all coordinates
of the n elements of V 0

4 should be even, a contradiction. �

Next we show how to lift the lower bounds for s(C2
n); s(C

3
n) and s(C4

n) to lower bounds for
s(Cr

n) with r � 5. Then we compare these bounds with upper bounds for s(Cr
n). Although these

lifting results give the best lower bounds which are currently available, a lifting of a sharp bound
for s(Cr

n) will in general not give sharp bounds for larger ranks.

Proposition 3.5. Let G be a �nite abelian group with exp(G) = n � 2.

1. Let G = G1 � G2 with subgroups G1; G2 � G such that exp(G1) = exp(G2) = n. If for

every i 2 f1; 2g there is some Ti = gi;1 � : : : � gi;li 2 F(Gi) such that Tn�1
i has no zero-sum

subsequence of length n, then the sequence Tn�1, where

T =
Y

�2[1;l1]
�2[1;l2]

�
g1;� + g2;�

�
2 F(G) ;

has no zero-sum subsequence of length n. In particular,

s(G) � jT j(n� 1) + 1 and �(G) � (jT j � 1)(n� 1) + 1 :

2. Let G = Cr
n with r � 2 and let r = r1+ : : :+rs be any partition of r with s; r1; : : : ; rs 2 N.

If for every i 2 [1; s] there exists some Ti 2 F(Cri
n ) such that Tn�1

i has no zero-sum

subsequence of length n, then

s(G) �
� sY
i=1

jTij
�
(n� 1) + 1 and �(G) �

� sY
i=1

jTij � 1
�
(n� 1) + 1 :

Proof. 1. Assume to the contrary that Tn�1 has a zero-sum subsequence T 0 of length n, say

T 0 =
nY

j=1

�
g1;�j + g2;�j

�
where �1; : : : ; �n 2 [1; l1] and �1; : : : ; �n 2 [1; l2] :

Then the sequences

T 01 =
nY

j=1

g1;�j and T 02 =
nY

j=1

g2;�j

have sum zero. Thus for every i 2 f1; 2g, the sequence T 0i is not a subsequence of Tn�1
i whence

�1 = : : : = �n, �1 = : : : = �n and

T 0 =
�
g1;�1 + g2;�1

�n
;
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a contradiction to the assumption that T 0 is a subsequence of Tn�1.
Now the lower bound for s(G) follows by the very de�nition, and the lower bound for �(G)

follows from Lemma 2.3.2.

2. This follows from 1. by induction on s. �

Corollary 3.6. Let n � 3 be an odd integer and r 2 N.

1. For r 2 [5; 12] we have s(Cr
n) � cr(n � 1) + 1 where c5 = 40; c6 = 81; c7 = 180; c8 =

400; c9 = 800; c10 = 1620; c11 = 3600; c12 = 8000.

2. If r = 4s+d with s 2 N0 and d 2 [1; 4] and if s(Cd
n) � cd(n�1)+1 with c1; c2; c3; c4 2 N,

then s(Cr
n) � 20scd(n� 1) + 1.

Proof. Let d 2 [1; 4]. We assert that there is some sequence T 2 F(Cd
n) such that Tn�1 has no

zero-sum subsequence of length n and jT j = cd with c1 = 2, c2 = 4, c3 = 9 and c4 = 20. For d = 1
the sequence T = 0g has this property for every g 2 Cn with ord(g) = n. For d = 2 this follows
from Proposition 3.1.2 with G = H = Cn. For d = 3 this follows by Lemma 3.4 and for d = 4 this
follows by Theorem 1.1. Now 1. and 2. follow from Proposition 3.5.2 (for 1. use the partitions
5 = 1+4; 6 = 3+3; 7 = 4+3; 8 = 4+4; 9 = 1+4+4; 10 = 3+3+4; 11 = 3+4+4; 12 = 4+4+4). �

Remarks 3.7. 1. N. Alon and M. Dubiner proved the following upper bounds for s(Cr
n): For

every r 2 N and every prime p one has s(Cr
p) � crp where cr is recursively de�ned as follows:

c1 = 2 and cr = 256r(log2 r + 5)cr�1 + (r + 1) for r � 2 (note that there is a misprint in the
formula (6) in [2, page 306]; since in the meantime it is known that s(C2

p) � 4p, one can also
start the recursion with c2 = 4). Furthermore, there exists an absolute constant M > 0 such
that s(Cr

n) � (Mr log2 r)
rn for all r; n 2 N (see [2, Theorem 1.1]).

2. Using some re�nements S. Kubertin gave the following upper bounds: For su�ciently
large p and n we have s(Cr

p) � crp and s(Cr
n) � 2crn with c1 = 2, c2 = 4 and cr =

79:3224 log(4:2637(1:4715r)r)cr�1 +
r+3
2 (see [44, Satz 5.2]).

3. Upper and lower bounds for s(Cr
3) (equivalently, bounds for the maximal size of a�ne

caps) are discussed in detail in Section 5.

4. Upper bounds and Consequences

We �rst deal with Theorem 1.2. Note that the results of N. Alon, M. Dubiner and S. Kubertin
(discussed in Remarks 3.7) provide the starting values c1; : : : ; cr mentioned in the assumption
of Theorem 1.2. Although the proof of this theorem is straightforward, it provides the �rst
reasonable upper bound for s(G) in case where G has not the form Cr

n (see Corollary 4.6). We
start with the following lemma which generalizes [34, Hilfssatz 2] (see also [12]).

Lemma 4.1. Let G be a �nite abelian group, H � G a subgroup and S 2 F(G) a sequence

of length jSj � (s(H) � 1) exp(G=H) + s(G=H). Then S has a zero-sum subsequence of length

exp(H) exp(G=H). In particular, if exp(G) = exp(H) exp(G=H), then

s(G) � (s(H)� 1) exp(G=H) + s(G=H):

Proof. This follows from [32, Proposition 5.7.11]. �
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Proof of Theorem 1.2. We proceed by induction on exp(G). If exp(G) = p 2 P, then G = Cr
p

and the assertion holds by assumption.
Let p 2 P with p j n1, p < nr and let mi = p�1ni for i 2 [1; r]. We consider the groups

pG �= Cm1
� : : :� Cmr and G=pG �= Cr

p :

Note that we may have m1 = 1, but in any case the induction hypothesis implies that

s(pG) �
rX

i=1

(cr+1�i � cr�i)mi � cr + 1 :

By Lemma 4.1 (with H = pG) we infer that

s(G) � (s(H)� 1) exp(G=H) + s(G=H)

�
� rX
i=1

(cr+1�i � cr�i)mi � cr

�
p+ cr(p� 1) + 1

�
rX

i=1

(cr+1�i � cr�i)ni � cr + 1 :

�

For the proof of Theorem 1.3 we need the following two well-known lemmas. For convenience
we provide the short proof of the second one.

Lemma 4.2. Let G be a �nite abelian group, k; n 2 N, D(G � Cn) � 3n � 1 and S 2 F(G) a
zero-sum sequence of length jSj = (2k � 1)n. Then S has a zero-sum subsequence of length n.

Proof. This follows from [32, Proposition 5.7.7.3]. �

We introduce some more notation. Let R be a commutative ring and l 2 N. We set R[X] =
R[X1; : : : ; Xl], and if

f =
X

m=(m1;:::;ml)2N
l
0

amX
m1

1 � : : : �Xml
l 2 R[X]

is a non-zero polynomial, then we denote by

deg(f) = maxfm1 + : : :+ml jm 2 Nl
0 with am 6= 0g 2 N0

the total degree of f .

Lemma 4.3. Let R be a commutative ring, l 2 N, M = h
Q

i2I Xi j I � [1; l]iR � R[X] the

submodule generated by the multi-linear monomials, C = f0R; 1Rg
l � Rl the cube in Rl and RC

the set of all maps ' : C ! R. Then the map

� : M ! RC ; de�ned by f 7! �(f) :

(
C �! R

c 7�! f(c)

is an R-module isomorphism.
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Proof. Clearly, M is a free R-module of rank 2l and RC is a free R-module of rank 2l having
the set of all characteristic functions as an R-basis. If c = (c1; : : : ; cl) 2 C, �c 2 RC the
characteristic function of c and

f =
Y

j2[1;l]
cj=1

Xj

Y
j2[1;l]
cj=0

(1�Xj) 2 M ;

then �(f) = �c whence � is an isomorphism. �

Proof of Theorem 1.3. 1. The lower bound follows by Lemma 3.2 and the upper bound by [32,
Proposition 5.7.7.2]).

2. Since D(G � Cn) =
�
D(H) � 1

�
+ D(Cn � Cn) =

�
D(H) � 1

�
+ 2n � 1, the lower bound

follows by Lemma 3.2, and it remains to prove the upper bound.
Let p 2 P be an odd prime, G = Cn1�: : :�Cnr a p-group, where r = r(G) and 1 < n1 j : : : j nr,

and let (e1; : : : ; er) be a basis of G with ord(ei) = ni for every i 2 [1; r]. Then

D(G) = 1 +
rX

i=1

(ni � 1) and D(G� Cn) = n+
rX

i=1

(ni � 1) :

Assume to the contrary that there exists a sequence S = g1 � : : : � gl 2 F(G) of length
jSj = l = D(G�Cn) + n, which has no zero-sum subsequence of length n. Since D(G) � 2n� 1
by assumption, Lemma 4.2 implies that S has no zero-sum subsequence of length 3n. For every
i 2 [1; l] we set

gi = ai;1e1 + : : :+ ai;rer with ai;� 2 [0; n� � 1] for all � 2 [1; r] :

We de�ne the polynomial

P =

 �Pl
i=1Xi

n

�
� 2

!
Q

rY
�=1

R� 2 Q[X]

where, for all � 2 [1; r],

R� =

�Pl
i=1 ai;�Xi � 1

n� � 1

�
2 Q[X] and Q =

�Pl
i=1Xi � 1

n� 1

�
2 Q[X] :

We set C = f0; 1gl � Ql and start with the following assertion.

Assertion : P (C) � Z, P (0) 6� 0 mod p and P (c) � 0 mod p for all c 2 C n f0g.

Proof of the Assertion : Clearly, P (0) 2 f�2; 2g whence P (0) 6� 0 mod p because p is odd.
Let 0 6= c = (c1; : : : ; cl) 2 f0; 1g

l � Ql. We have to show that P (c) � 0 mod p.

We need the following two facts on binomial coe�cients. Let k;m 2 N.

F1. If pk - m, then
�
m�1
pk�1

�
� 0 mod p.

F2.
�
mn
n

�
� m mod p.

We consider the sequence

Sc =
lY

i=1

gcii 2 F(G) :

Clearly, Sc is a subsequence of S of length jcj = c1 + : : :+ cl � l. We distinguish two cases.



ZERO-SUM PROBLEMS IN FINITE ABELIAN GROUPS AND AFFINE CAPS 15

CASE 1 : Sc is not a zero-sum sequence.
Then there exists some � 2 [1; r] such that

lX
i=1
ci=1

ai;� 6� 0 mod n� :

Then F1 implies that R�(c) � 0 mod p whence P (c) � 0 mod p.

CASE 2 : Sc is a zero-sum sequence.
If jScj is not divisible by n, then F1 implies that Q(c) � 0 mod p whence P (c) � 0 mod p.

Suppose that jScj is divisible by n. Then by assumption we have jScj = 2n whence F2 and the
�rst factor of P imply that P (c) � 0 mod p.
Thus the proof of the Assertion is complete.

Now we use Lemma 4.3 with R = Q and with � and M as de�ned there.
Let P0 2 Q[X] be the polynomial arising from P after replacing the powers Xk

i by Xi for all
i 2 [1; l] and all k 2 N. Then P0 2M , deg(P0) � deg(P ) and P (c) = P0(c) for all c 2 C.
For every c = (c1; : : : ; cl) 2 C we de�ne

�c =
lY

i=1
ci=1

Xi

lY
i=1
ci=0

(1�Xi) 2M � Q[X]

and fP0 =X
c2C

P0(c)�c 2M � Q[X] :

Then �(�c) : C ! Q is the characteristic function of c and we have �(fP0)(c) = �(P0)(c) for all

c 2 C. Therefore, by Lemma 4.3 we get fP0 = P0. The Assertion implies that the coe�cient ofQl
i=1Xi in fP0 and the coe�cient of

Ql
i=1Xi in P0(0)�0 are both integers which are congruent

modulo p but not divisible by p. In particular, the coe�cient of
Ql

i=1Xi in fP0 is non-zero

whence deg(fP0) = l, and we get

l = deg(fP0) = deg(P0) � deg(P )

� n+ deg(Q) +
rX

�=1

deg(R�) � 2n� 1 +
rX

�=1

(n� � 1)

= D(G� Cn) + n� 1 < l ;

a contradiction. �

We end this section with a series of corollaries. Among others they provide some special types
of groups for which the lower bounds derived in Section 3 and the upper bounds of this section
give the precise values of �(G) and s(G). The �rst corollary generalizes [34, Satz 1].

Corollary 4.4. Let G = C2k1 � Cr�1
2k

where k; r 2 N, r � 2 and k1 2 [1; k]. Then

�(G) + 2k � 1 = s(G) = 2r�1(2k1 + 2k � 2) + 1 :
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Proof. For every i 2 [1; r] we have s(Ci
2) = 2i + 1 = ci(2� 1) + 1 with ci = 2i (this can be seen

directly from the de�nition, or see [32, Corollary 5.7.6]). Thus Theorem 1.2 implies that

s(G) � (2r � 2r�1)2k1 +
r�1X
i=2

(2r+1�i � 2r�i)2k + 2 � 2k � 2r + 1

= 2r�12k1 + 2k2r�1 � 2r + 1

= 2r�1(2k1 + 2k � 2) + 1 :

On the other hand, Proposition 3.1.3 (with G = C2k1 and Ck
n = Cr�1

2k
) implies that

1 + 2r�1(2k � 1 + 2k1 � 1) � �(G) + 2k � 1 ;

whence the assertion follows by Lemma 2.3.1. �

Corollary 4.5. Let P � P be a non-empty set of odd primes and let n 2 N be a product of

prime powers with primes from P .

1. If s(C3
p) = 9p� 8 for all p 2 P , then 8n� 7 = �(C3

n) = s(C3
n)� n+ 1.

2. If s(C4
p) = 20p� 19 for all p 2 P , then 19n� 18 = �(C4

n) = s(C4
n)� n+ 1.

3. Let r; cr 2 N and let m be a power of 2. If s(Cr
p) � cr(p � 1) + 1 for all p 2 P , then

s(Cr
mn) � 2r(m� 1)n+ cr(n� 1) + 1.

Proof. 1. By Lemma 3.4 and Lemma 2.3.1 we have

8n� 7 � �(C3
n) � s(C3

n)� n+ 1 :

On the other hand, Theorem 1.2 (with r = 3 and cr = 9) implies that s(C3
n) � 9n� 8.

2. By Theorem 1.1 and Lemma 2.3.1 we have

19n� 18 � �(C4
n) � s(C4

n)� n+ 1 :

On the other hand, Theorem 1.2 (with r = 4 and cr = 20) implies that s(C4
n) � 20n� 19.

3. We set G = Cr
mn and H = nG �= Cr

m whence G=H �= Cr
n. Since s(Cp) � s(C2

p) � : : : �
s(Cr

p) � cr(p � 1) + 1, Theorem 1.2 implies that s(G=H) � cr(n � 1) + 1, and Corollary 4.4
implies that s(H) = 2r(m� 1) + 1. Using Lemma 4.1 we infer that

s(G) � (s(H)� 1) exp(G=H) + s(G=H)

= 2r(m� 1)n+ cr(n� 1) + 1 :

�

Corollary 4.6. Let G = Cn1 � Cn2 � Cn3 where 1 < n1 j n2 j n3 and let P � P denote the set

of primes dividing n3.

1. If s(C3
p) � 9p � 8 for all p 2 P , then s(G) � 5n1 + 2n2 + 2n3 � 8. If n2 = n3, then

4n1 + 4n3 � 7 � s(G).

2. If G is a 2-group, then s(G) � 4n1 + 2n2 + 2n3 � 7, and equality holds if n2 = n3.
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Proof. For every prime p we have s(Cp) = 2p� 1 and s(C2
p) = 4p� 3 by Theorem A. Corollary

4.4 shows that s(C3
2 ) = 8(2 � 1) + 1. Thus Theorem 1.2 implies the upper bounds. The lower

bound in 1. follows from Proposition 3.1.3 (with k = 2 and n = n3). If G is a 2-group and
n2 = n3, then Corollary 4.4 implies equality in 2. �

Remarks 4.7. 1. For r 2 f3; 4; 5g the precise values of s(Cr
3) and g(Cr

3) (see the discussion
after Lemma 2.3) were found (independently) by many authors (see the historical remarks after
Lemma 5.2). We have s(C3

3 ) = 19, s(C4
3 ) = 41 and s(C5

3 ) = 91 whence P = f3g satis�es
both assumptions in Corollary 4.5, and P = f2; 3g satis�es the assumption in Corollary 4.6.1.
Note that the sequence (2; 4; 9; 20; 45) = (g(C3)� 1; : : : ; g(C5

3 )� 1) has number A090245 in the
On-Line Encyclopedia of Integer Sequences [60].

2. Applying Corollary 4.5.3 (with P = f3g; r = 3;m = 2; c3 = 9) and Proposition 3.1 we
obtain 41 � s(C3

6 ) � 43. Thus if the group C3
6 has Property D, then s(C3

6 ) = 41.

3. In general, neither the upper bound in Theorem 1.2 nor the upper bound in Corollary 4.6.1
are sharp. Indeed, for certain groups the upper bound from Theorem 1.3.2 is smaller than the
upper bound from Corollary 4.6.1.

5. On a geometric aspect of the invariant s(G)

It seems conceivable that all phenomena controlling the invariant s(Cr
n), for n � 3 odd and

r 2 N, already occur in the special case where n = 3 (see the discussion after Lemma 5.4 and

note that in all situations known so far, we have s(Cr
n) =

s(Cr
3
)�1
2 (n� 1) + 1). But the problem

to determine s(Cr
3) is equivalent to the (well investigated) problem of maximal caps in a�ne

geometry (see Lemma 5.2 and the subsequent remarks). Even though this relationship may have
been implicitly known, we hope that the discussion below gives directions for future research.
We start with some elementary facts from �nite geometry. For a short introduction and

collection of basic properties of �nite geometries we refer to [48, Appendix B] and for more
material to [39]. A recent survey on extremal problems in �nite geometry is given in [40].
Let q be a prime power and r 2 N. Recall that the s-dimensional subspaces of a projective

space PG(r; q) can be identi�ed with the (s + 1)-subspaces of the vector space Fr+1q . The
incidence in the projective geometry is de�ned by the inclusion of the corresponding vector
spaces. The 0-dimensional subspaces of a projective space PG(r; q) are called the points, so
PG(r; q) has qr+ qr�1+ : : :+ q+1 points. The 1-dimensional subspaces are called the lines and
the (r � 1)-dimensional subspaces are called the hyperplanes. The points of a set S � PG(r; q)
are called collinear if there is a line L so that S � L.
One of the hyperplanes of PG(r; q) can be thought of as the hyperplane at in�nity. The

complement of this hyperplane in PG(r; q) is the a�ne geometry AG(r; q) which consists of qr

points. These points can be thought of as lying on q parallel hyperplanes of qr�1 points each.
As the automorphism group of PG(r; q), PGL(r; q), operates transitively on the hyperplanes we
can assume without loss of generality that the hyperplane at in�nity is the hyperplane xr+1 = 0.
So we can always choose this standard embedding of AG(r; q), i.e. the points (x : 1) in PG(r; q)
So one can also think of AG(r; q) as Frq, as the point (x : 1) is uniquely determined by x 2 Frq.

It is also convenient to call x itself a point of AG(r; q). The geometric structure of AG(r; q) is
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induced from PG(r; q) by restriction. A line in projective space has q+1 points, a line in a�ne
space has q points. One of the classic objects of interest in �nite geometry are caps.

De�nition 5.1.

1. An m-cap C � PG(r; q) is a set of jCj = m points no three of which are collinear.
2. An m-cap in PG(r; q) is called maximal if there exists no m+ 1-cap in PG(r; q).
3. A cap C � PG(r; q) is called a�ne if there is a hyperplane H so that C \H = ;.
4. An m-cap in PG(r; q) is called maximal a�ne if there exists no a�ne m + 1-cap in

PG(r; q).

Lemma 5.2. Let G = Fr3 with r 2 N.

1. The map f , de�ned by f(T ) = supp(T ), is a bijection from the set

fT 2 F(G) j T is squarefree and has no zero-sum subsequence of length 3g

onto the set fC � G j C is a capg.

2. g(G)� 1 is the maximal size of a cap in AG(r; 3).

3. s(G) = 2g(G) � 1, and every sequence S 2 F(G) of length jSj = s(G) � 1 which has no

zero-sum subsequence of length 3 has the form S = T 2 where supp(T ) is a maximal cap

in G. Conversely, if T 2 F(G) is squarefree and has no zero-sum subsequence of length

3, then T 2 has no zero-sum subsequence of length 3.

Proof. We identify G with the a�ne space AG(r; 3) � PG(r; 3).

1. Three di�erent points (x : 1); (y : 1); (z : 1) 2 AG(r; 3) are not on a line if and only if the
vectors (x; 1); (y; 1); (z; 1) 2 Fr+13 are linearly independent, i.e. if there is no nontrivial linear
combination �x + �y + �z = 0 with � + � + � = 0. The only possible coe�cients f�; �; �g are
f1; 1; 1g, f2; 2; 2g or permutations of f0; 1; 2g. The case f0; 1; 2g is impossible as it would imply
that two points are equal. An a�ne relation with respect to coe�cients f2; 2; 2g is equivalent
to the relation with respect to f1; 1; 1g by a scalar multiplication. So three di�erent points are
not on a line if and only if the corresponding sequence has no zero-sum of length three.

2. This follows from 1.

3. In [34, Hilfssatz 3] it is proved that s(G) = 2g(G) � 1. Therefore Lemma 2.3.3 implies
that G has Property D whence the �rst assertion follows from 1. Let T 2 F(G) be a squarefree
sequence without a zero-sum subsequence of length 3. Assume to the contrary that T 2 has a
zero-sum subsequence S0 of length 3. Since S0 is not a subsequence of T , we have S0 = h2h0 for
some h; h0 2 G. But then 2h+ h0 = 0 implies that h = h0, a contradiction. �

Let us brie
y discuss some further connections to related problems. As the lemma above al-
ready shows the same type of problem has been studied in various di�erent parts of mathematics,
such as number theory, combinatorics, and �nite geometry.

1. A sequence g1 � : : : � gl 2 F(F
r
p) is called an arithmetic progression of length l if there exist

a; b 2 Frp such that gi = a+ ib for all i 2 [0; l � 1]. The problem of studying sets without
arithmetic progressions in Frp has been studied for example by B.J. Green [33] and V. Lev
[47].
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In analogy to Lemma 5.2 one can state:
The map f , de�ned by f(T ) = supp(T ), is a bijection from the set

fT 2 F(G) j T is squarefree and has no zero-sum subsequence of length 3g

onto the set fC � G j C does not contain an arithmetic progression of length 3g. Thus
g(G)� 1 is the maximal size of a set in G without an arithmetic progression of length 3.
This follows from Lemma 5.2.1. by observing that three points in Fr3 de�ne an arith-

metic progression of length 3 if and only if they are collinear.
The problem of sets without progressions in Fr3 is closely connected to the famous

Erd}os-Tur�an problem on sets of integers without arithmetic progressions. Using harmonic
analysis, K. Roth [58] was the �rst to show that the maximal cardinality r3(n) of sets

without a progression of length 3 in [1; n] is r3(n) = O
�

n
log logn

�
. Further progress

was due to D.R. Heath-Brown [35], E. Szemer�edi [62], and J. Bourgain [8], leading to

r3(n) = O
�
n(log logn)1=2

(logn)1=2

�
. As B.J. Green [33] shows all four proofs can be adapted to give

an upper bound of O
�
3r

r

�
for the cardinality of maximal sets in Fr3 without an arithmetic

progression of length 3. This bound was �rst proved by R. Meshulam [49], based on
Roth's method. For precursors see [10] and [21], [22], for a generalization see [47]. For
explicit bounds on g(Cr

3) see below.
2. B.L. Davis and D. Maclagan (see [13]) wrote an interesting article on the card game SET

which carefully explains the connections between this card game and a�ne caps. In short,
cards consists of several properties such as colour and symbol. A \SET" is a set of 3 cards
where these properties are either the same (like 3 times the same colour) or all di�erent
(like all three di�erent colours occur). This corresponds to arithmetic progression of
length 3 or 3 collinear points. Since this card game is very popular, a growing number
of manuscripts appears on the internet rediscovering results that are equivalent to the
values of g(C3

3 ) = 10 or g(C4
3 ) = 21, here we only mention the computer programme by

D. E. Knuth (see [43]).
3. The problem of �nding lattice points with no 3 collinear has an interesting application

to graph drawings. Given a �nite simple graph G, a drawing of G represents each vertex
by an integer gridpoint in Z3, where the edges are drawn as the straight line segments
between the adjacent vertices. Edges are not allowed to pass through other vertices. One
is interested in drawings with minimal volume of the bounding box of the vertices. The
connection to the problem of no 3 collinear points follows by the observation that a set
V � Z3 of n points induces a drawing of the complete graph Kn if and only if no three
points of V are collinear. For more details see A. P�or and D.R. Wood [55]. Also, their
open problem 3 on vol(n; d; 1) is a question on dense d-dimensional point con�gurations
without 3 points on a line, and their comment that this problem is trivial for d � log2 n
follows from the trivial cap consisting of the 2d points with coordinates 0 and 1 only.

We now describe the connection to caps in some more detail and discuss explicit bounds on
g(Cr

3).
The determination of the maximal size of caps in projective geometry PG(r; q) or a�ne

geometry AG(r; q), as well as their complete characterization, appears to be a di�cult problem.
Only few exact results are known. We refer to [40, 5] for the known results and here only
summarize some details we need for caps in AG(r; 3).
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Let q be an odd prime power. In PG(2; q) there are (q + 1)-caps, the ovals, known to be
maximal [7]. An oval avoids several hyperplanes, so the maximal size of a cap in AG(2; 3) is
4. In PG(3; q) there is a unique maximal (q2 + 1)-cap, the ovoid, see [7, 3, 52]. The ovoid
contains an a�ne q2-cap. As every q2-cap in PG(3; q) can be embedded in the unique (q2 + 1)-
cap (see [20]) and as the automorphism group of the ovoid is transitive, also the a�ne q2-cap is
projectively unique. In PG(4; 3) there exist exactly 9 types of maximal 20-caps, one of these is
a�ne, see [53, 38].
The values, s(C3

3 ) = 19, g(C3
3 ) = 10, s(C4

3 ) = 41 and g(C4
3 ) = 21, were rediscovered several

times. It appears they were �rst found by �nite geometers. R.C. Bose [7] found the size
of the maximal a�ne caps in dimension 3, and the uniqueness was proved by A. Barlotti,
G. Panella [3, 52]. In AG(4; 3) the existence and the maximality of a cap of size 20 was proved
by G. Pellegrino [53], and the uniqueness was proved by R. Hill [38]. The size of the unique
maximal cap in AG(5; 3) is 45, as proved by Y. Edel, S. Ferret, I. Landjev, and L. Storme [16].
In AG(6; 3) a 112-cap can be constructed by applying the elementary doubling construction due
to A.C. Mukhopadhyay [50] to the 56 points of the Hill cap in PG(5,3), see [36, 37]. The size
of a cap in AG(6; 3) can be at most 114, see [6]. P. Frankl, R.L. Graham and V. R�odl [21]
connected the problem of no 3 points in arithmetic progression in Fr3 to sun
owers and proved,
based on a construction in r = 18, that there are a�ne caps in AG(3; r) of size at least 2:179r,
for su�ciently large r.
In the combinatorics community the problem of determining the invariants s(Cr

n) and g(Cr
n)

was posed and popularized by H. Harborth and A. Kemnitz. H. Harborth veri�ed that s(C3
3 ) =

19, and A. Kemnitz proved s(C4
3 ) = 41 (see [34], [41], [42] and also [9], [10], [63]).

For larger r lower bounds for the size of an a�ne cap in AG(r; 3), i.e. bounds for g(Cr
3)� 1,

can be obtained from projective caps by choosing a hyperplane (which will be the hyperplane
at in�nity of the a�ne cap) and delete all points of the projective cap in this hyperplane.
The lower bounds for r � 12 in the table below are obtained by choosing a hyperplane that

contains the minimal number of points of the projective caps found at [14]. The bounds for
r = 62 and r = 480 are constructed in [15]. The latter shows, that there are a�ne caps in
AG(3; r) of size at least 2:217389r, for su�ciently large r.
For the upper bounds we recursively use the following lemma, which is an adaption of [6,

Theorem 2] (see also [49]) to our situation. The upper bounds in the table are obtained by
starting with the maximal cap in AG(5; 3), that is with g(C5

3 )� 1 = 45 [16].

Lemma 5.3. If r � 3; then

(g(Cr
3)� 1) � 3r

3(g(Cr�1
3 )� 1) + 1

3(g(Cr�1
3 )� 1) + 3r

;

236 � g(C7
3 )� 1 � 296 ;

476 � g(C8
3 )� 1 � 783 ;

1068 � g(C9
3 )� 1 � 2099 ;

2228 � g(C10
3 )� 1 � 5691 ;

5232 � g(C11
3 )� 1 � 15573 ;

10848 � g(C12
3 )� 1 � 42944 ;

2:57342 � 1021 � 2417929 � g(C62
3 )� 1 � 6:11654 � 1027 ;

1:0095 � 10166 � 3280 + 85
�10
5

�
11275125 � g(C480

3 )� 1 � 2:17081 � 10226 :
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The upper bound coming from Lemma 5.3 tends to 3r

r
, as r tends to in�nity. Note that R. Meshu-

lam [49] states his bound with an extra factor of 2.

Lemma 5.4. For r 2 f3; 4; 5g the maximal a�ne cap in AG(r; 3) is unique up to a�ne trans-

formation (that means, every maximal cap can be written as MC+a where C is a �xed example

of the maximal cap, M a nonsingular r � r�Matrix over F3 and a 2 Fr3).

Proof. In the preceding discussion we have seen that the caps in question are projectively unique.
These caps avoid only one hyperplane (e.g. easily veri�ed by computer). As there is only one
avoided hyperplane a projective homomorphism �xing the cap must also �x this hyperplane.
This hyperplane must be the \hyperplane at in�nity" that de�nes the embedding of the a�ne

geometry into the projective geometry. As we motivated in the introduction we can use the
standard embedding of AG(r; 3) (that is, all points are of the form (x : 1)t in PG(r; 3)).
A projective homomorphism �xing the\hyperplane at in�nity", xr+1 = 0, must be equivalent

to a multiplication with a matrix of the form�
M a
0 1

�
with M a nonsingular r � r�Matrix over F3 and a 2 Fr3, i.e. be an a�ne transformation. �

In the remainder of this section we discuss some geometric aspects of the sequence constructed
in [17] and of the sequence given in Theorem 1.1 (we use the notations introduced before Lemma
3.3). If n � 3 is odd and

T =

0@21
2

1A0@00
1

1A0@01
0

1A0@01
1

1A0@10
0

1A0@10
1

1A0@11
2

1A0@12
2

1A0@00
0

1A ;

then the sequence Tn�1 2 F(C3
n) has no zero-sum subsequence of length n. This was �rst proved

in [17] for all odd n � 3. The case n = 3 was studied in [34, Proof of Satz 4]. In that case,
the underlying set supp(T ) is a cap in AG(3; 3), and hence unique up to a�ne transformation
(see Lemma 5.2.1, and Lemma 5.4). A computer based search produced the following squarefree
sequences T1; : : : ; T6 with the following properties: in case n = 3 all underlying sets are repre-
sentations of the cap in AG(3; 3), and for all odd n � 3 the sequences Tn�1

1 ; : : : ; Tn�1
6 have no

zero-sum subsequence of length n.

T1 =

0@20
2

1A0@11
1

1A0@11
0

1A0@22
1

1A0@10
0

1A0@21
1

1A0@10
2

1A0@21
2

1A0@00
0

1A ;

T2 =

0@21
2

1A0@10
1

1A0@11
0

1A0@21
1

1A0@10
0

1A0@20
1

1A0@11
2

1A0@22
2

1A0@00
0

1A ;

T3 =

0@11
2

1A0@00
1

1A0@21
0

1A0@21
1

1A0@10
0

1A0@10
1

1A0@01
2

1A0@22
2

1A0@00
0

1A ;
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T4 =

0@11
2

1A0@10
1

1A0@01
0

1A0@11
1

1A0@10
0

1A0@20
1

1A0@01
2

1A0@02
2

1A0@00
0

1A ;

T5 =

0@20
2

1A0@01
1

1A0@01
0

1A0@02
1

1A0@10
0

1A0@11
1

1A0@10
2

1A0@11
2

1A0@00
0

1A and

T6 =

0@21
1

1A0@00
2

1A0@11
0

1A0@11
2

1A0@20
0

1A0@20
2

1A0@01
1

1A0@12
1

1A0@00
0

1A :

Of these seven examples the sequence T is distinguished by being the only one with the
canonical a�ne basis (containing 0; e1; e2; e3) and moreover is one of those sequences with a
minimal sum of entries.

We now come back to the example in C4
n. Consider the support

S(n) = supp
�
T (n)

�
� (Z=nZ)4 where n � 3 is odd ;

of the squarefree sequence given in the proof of Theorem 1.1.
By Lemma 5.2.1, S(3) is a cap in AG(4; 3), and by Lemma 5.4, it is unique up to a�ne

transformation. However, there are representations T of S(3) such that the sequence S = Tn�1

(now considered as a sequence in Cr
n), with supp(T ) = T, has a zero-sum subsequence of length

n. For example, by [13] the set(0BB@
0
0
0
0

1CCA ;

0BB@
2
0
0
0

1CCA ;

0BB@
0
2
0
0

1CCA ;

0BB@
2
2
0
0

1CCA ;

0BB@
1
0
2
0

1CCA ;

0BB@
0
1
2
0

1CCA ;

0BB@
1
2
2
0

1CCA ;

0BB@
2
1
2
0

1CCA ;

0BB@
1
1
1
0

1CCA ;

0BB@
1
1
0
1

1CCA ;

0BB@
0
0
2
2

1CCA ;

0BB@
2
0
2
2

1CCA ;

0BB@
0
2
2
2

1CCA ;

0BB@
2
2
2
2

1CCA ;

0BB@
1
0
0
2

1CCA ;

0BB@
0
1
0
2

1CCA ;

0BB@
1
2
0
2

1CCA ;

0BB@
2
1
0
2

1CCA ;

0BB@
1
1
1
2

1CCA ;

0BB@
1
1
2
1

1CCA
)

is a representation of the cap S(3). For every odd n > 3, the sequence S consisting of n � 1
copies of any of the above points has the following zero-sum subsequence S0 of length n where

S0 =

0BB@
1
0
2
0

1CCA
0BB@
1
1
1
0

1CCA
0BB@
1
1
0
1

1CCA
0BB@
0
1
0
2

1CCA
0BB@
2
2
2
2

1CCA
n�3

2

0BB@
0
0
0
0

1CCA
n�5

2

:

Actually, using a computer we tried many representations of the cap S(3), but we did not �nd
any that have no zero sums of length n modulo other odd integers n and use the entries 0; 1; 2
only. As the proof of Theorem 1.1 shows the example can be thought of as two twisted copies
of caps in AG(3; 3) and two further points. The example we found may be one of the easiest
ones, since it uses only the 4 entries 0; 1; 2; 3, with only two 3's, and because of the symmetry
discussed in the proof of Theorem 1.1, and below.
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Finally we study the automorphism group of the set S(n) (that is the group of all a�ne
transformations f : (Z=nZ)4 ! (Z=nZ)4 with f

�
S(n)

�
= S(n)). It is hoped for that the study

of the automorphism group helps to construct maximal caps in AG(r; q) for r > 4.
The following automorphisms are easy to spot.

S(n) ! S(n)

(a; b; c; d) 7! (b; a; c; d)

(a; b; c; d) 7! (a; b; d; c)

(a; b; c; d) 7! (3; 3; 2; 2)� (a; b; c; d)

Combinations of these already generate up to 8 points for one given point (a; b; c; d). A
complete computer based search revealed that the full automorphism group of S(5) � F45 and
of S(7) � F47 has 96 elements. The maps

g1 : (a; b; c; d) 7! (0; 0; 2; 2) + (b; a;�c;�d)

g2 : (a; b; c; d) 7! (3; 3; 2; 2)� (a; b; c; d)

g3 : (a; b; c; d) 7! (f; f; f; f + 2)� (d; c; b; d+ c+ b);

with f := (a+ b+ c+ d)(n+ 1)=2

g4 : (a; b; c; d) 7! (0; 0; 2; 0) + (a; b;�d; c)

�x the set S(n), as can be seen by explicit veri�cation. The map g1 as well as g2 is of order 2 and
commutes with all other maps. The maps g3 and g4 are of order 3 and 4, respectively. The maps
g3 and g4 generate a group of order 24 without a centre and with more than two elements of
order 3. Thus hg3; g4i is a group which is isomorphic to the symmetric group S4 (see [46, Lemma
4.3.4]). Therefore the automorphism group of S(n) must contain the group C2 � C2 � S4 as a
subgroup. It is well known that in case n = 3 the full automorphism group has order 2880. For
n 2 f5; 7g a computer search shows that G = C2 �C2 � S4 is the full automorphism group and
we do not expect any further automorphisms for n > 7. Under the group action of hg1; g2; g3; g4i
the set S(n) is split into two orbits which are given in the following lemma.

Lemma 5.5. Let n � 3 be odd.

1. The group G(n) = hg1; g2; g3; g4i is isomorphic to C2�C2�S4. G(n) is a subgroup of the

automorphism group of S(n), and for n 2 f5; 7g it is the full automorphism group.

2. Under the group action of G(n) the set S(n) is split into two orbits of length 12 (the �rst

12 below) and 8 (the last 8) respectively .

1 1 1 1 2 2 2 2 1 3 0 2 1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2 3 1 2 0 2 2 2 2 1 1 1 1
0 0 2 2 0 0 2 2 1 1 1 1 0 1 1 2 0 1 1 2
0 2 0 2 0 2 0 2 1 1 1 1 1 0 2 1 1 0 2 1

Proof. 1. has been outlined above and 2. is checked by a direct computation. �
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