
The classification of the largest caps in AG(5, 3)

Y. Edel S. Ferret∗ I. Landjev† L. Storme

Abstract

We prove that 45 is the size of the largest caps in AG(5, 3), and such a 45-cap
is always obtained from the 56-cap in PG(5, 3) by deleting an 11-hyperplane.

1 Introduction

A k-cap K in AG(n, q), respectively in PG(n, q), is a set of k points in AG(n, q), respec-
tively in PG(n, q), such that no three points are collinear.

A k-cap of AG(n, q), respectively PG(n, q), is called complete when it cannot be
extended to a larger cap of AG(n, q), respectively PG(n, q).

The main problem in the theory of caps is to find the maximal size of a cap in AG(n, q)
or PG(n, q).

Presently, only the following exact values are known. In AG(2, q) and PG(2, q), q odd,
there are at most (q + 1)-caps [3]. In AG(2, q) and PG(2, q), q even, there are at most
(q + 2)-caps [3]. In AG(3, q), q > 2, the maximal size of a cap is q2, and in PG(3, q),
q > 2, the maximal size of a cap is q2 + 1 [3, 17]. And in AG(n, 2) and in PG(n, 2), the
maximal size of a cap is 2n [3].

In some cases, a complete characterization is known. Namely, in AG(2, q) and in
PG(2, q), q odd, every (q + 1)-cap is a conic [18, 19]. In AG(2, q) and PG(2, q), q even,
q ≥ 16, distinct types of (q+2)-caps exist; see [12] for a list of the known infinite classes of
(q + 2)-caps. In PG(3, q), q odd, every (q2 + 1)-cap is an elliptic quadric and in AG(3, q),
q odd, every q2-cap is an elliptic quadric minus one point [1, 15]. In PG(3, q), q = 2h,
h odd, h ≥ 3, next to the elliptic quadric, at least one other type of (q2 + 1)-cap exists,
called the Tits ovoid [21]. In AG(3, q), q even, q > 2, every q2-cap is obtained by deleting
one point from a (q2 + 1)-cap in PG(3, q). In PG(n, 2), every 2n-cap is the complement
of a hyperplane [20].

Apart from these results which are either valid for arbitrary q or arbitrary dimension
n, only some other sporadic results are known. Namely, the maximal size of a cap in
AG(4, 3) and in PG(4, 3) is 20 [16]. The maximal size of a cap in PG(5, 3) is 56 [7]. And
the maximal size of a cap in PG(4, 4) is 41 [6].
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Technological Research in Industry (IWT), grant No. IWT/SB/991011/Ferret.

†The research of this author has been partially supported by the Bulgarian NSF under contract No
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Regarding the characterizations, exactly one type of 20-cap exists in AG(4, 3) and
exactly 9 types of 20-caps exist in PG(4, 3) [9]. The 56-cap in PG(5, 3) is projectively
unique [8]. And there are at least 2 distinct types of 41-caps in PG(4, 4) [6].

In the other cases, only upper bounds on the sizes of caps in AG(n, q) and PG(n, q)
are known. We refer to [12] for a list of the known results. We also wish to state the
following result of Bierbrauer and Edel [2] which improves the Meshulam upper bound on
the size of caps in AG(n, q), q odd [14].

Theorem 1.1 Let Q = qh, q > 2 and n ≥ 4. Then the size of a cap in AG(n, Q) is upper
bounded by

(nh + 1)Qn

(nh)2
.

We focus in this article on the maximal size of a cap in AG(5, 3) and its relation to
the 56-cap in PG(5, 3). This latter 56-cap in PG(5, 3), called the Hill cap, intersects a
hyperplane of PG(5, 3) in either 20 or 11 points.

Hence, defining AG(5, 3) to be PG(5, 3) minus an 11-hyperplane of this 56-cap, we
obtain that there exists a 45-cap in AG(5, 3).

No larger caps are known in AG(5, 3).
Presently, the best upper bound on the size of a cap in AG(5, 3) is by Bruen, Haddad

and Wehlau [4] who proved that the size of a cap in AG(5, 3) is at most 48.
We prove in this article the following theorem.

Theorem 1.2 The maximal size of a cap in AG(5, 3) is equal to 45, and every 45-cap in
AG(5, 3) is obtained by deleting an 11-hyperplane from a 56-cap in PG(5, 3).

Moreover, there is a unique type of 45-caps in AG(5, 3).

2 Preliminary results

The following result was already mentioned in the introduction, but we repeat it since it
is frequently used in this article.

Lemma 2.1 The largest cap in AG(3, 3) is a 9-cap obtained by deleting a 1-hyperplane
from an elliptic quadric in PG(3, 3).

Proof: See for instance [11, p. 104]. 2

A set K of n points of PG(k − 1, q) is called an (n, m; k − 1, q)-set, or (n,m)-set
for short, if K meets every hyperplane in at most m points. The existence of a projec-
tive [n, k, d]q code of full length (no coordinate position identically zero) is equivalent to
the existence of an (n, n − d)-set in PG(k − 1, q). For a detailed investigation of this
correspondence, we refer to [5] and [13].
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Given an (n, n−d)-set K in PG(k− 1, q), we denote by ni the number of hyperplanes
H in PG(k−1, q) with |K∩H| = i. We call the sequence of integers {ni}i≥0 the spectrum
of K. Simple counting arguments yield the following identities for n-caps in PG(k−1, q):

∑
i≥0 ni = qk−1

q−1∑
i≥0 ini = n qk−1−1

q−1∑
i≥0 i(i− 1)ni = n(n− 1) qk−2−1

q−1∑
i≥0 i(i− 1)(i− 2)ni = n(n− 1)(n− 2) qk−3−1

q−1
.

(1)

Let P be the set of points of PG(k−1, q) and let π and σ be disjoint flats of dimensions
i and j, respectively, with i + j = k − 2. We define the projection ϕπ,σ from π onto σ by

ϕπ,σ:P \ π → σ : Q 7→ σ ∩ 〈π,Q〉, (2)

where 〈π, Q〉 is the (i + 1)-dimensional flat generated by π and Q. Let us note that ϕπ,σ

maps flats of dimension (i + s) containing π into (s − 1)-dimensional flats in σ. Given
an (n, m)-set K and a set of points F ⊂ σ, we define µ(F) = |{P ∈ K | ϕ(P ) ∈ F}|.
If F is a k′-dimensional flat in σ and |K ∩ π| = w then µ(F) ≤ γk′+i+1 − w, where
γk′+i+1 = |PG(k′ + i + 1, q)|. Let l be a line in σ incident with the points P0, P1, . . . , Pq.
We call the (q + 1)-tuple (µ(P0), µ(P1), . . . , µ(Pq)) the type of l, and we call µ(Pi) the
weight of the point Pi.

We call the 1-, 2-, 3- and (k−2)-dimensional flats lines, planes, solids, and hyperplanes,
respectively. If K is an (n, m)-set, then an i-line (with respect to K) is a line l with
|K ∩ l| = i; i-planes, i-solids, and i-hyperplanes are defined in a similar way.

By [22], there are exactly 7 different (18, 8)-sets in PG(4, 3). Each (18, 8)-set is
uniquely extendable to a (20, 8)-set. There are exactly 2 types of (18, 8)-sets, which
are also affine (this corresponds to the fact that two of the seven [18, 5, 10]-codes have
maximum weight 18). Also a (9, 5)-set in AG(4, 3) is uniquely extendable to an (11, 5)-set
in PG(4, 3); this corresponds to the dual Golay code. We also remark that a solid in
PG(4, 3) intersects an (11, 5)-set in 5 or 2 points.

In PG(4, 3), we will project an affine (18,8)-set, respectively an affine (9,5)-set from
an empty plane π onto some line l disjoint from π. The next table lists the possible types
of the lines which are images of such sets under this projection. It is assumed that π is
contained in a 0-solid δ. The column ”# of π’s” gives the number of choices for the empty
plane π in δ, for which we get the particular type for the line l.
Table 1. The types of the images of (18,8)- and (9,5)-sets in PG(4, 3) under a projection
from an empty plane contained in a 0-solid.
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Type # of π’s

(18, 8) (A) (8,8,2,0) 9
(B) (8,5,5,0) 9
(C) (7,7,4,0) 18
(D) (6,6,6,0) 4

(9, 5) (E) (5,2,2,0) 18
(F) (4,4,1,0) 18
(G) (3,3,3,0) 4

Remark 2.2 Let π be the plane at infinity, from which we project. Types (A), (B)
(respectively (E)) correspond to the case that π contains none of the two points which
extend the (18, 8)-set (respectively the (9, 5)-set). Type (C) (respectively (F)) corresponds
to the case that π contains one of the two points which extend the (18, 8)-set (respectively
the (9, 5)-set). Type (D) (respectively (G)) corresponds to the case that π contains the
two points which extend the (18, 8)-set (respectively the (9, 5)-set).

3 The size of a largest cap in AG(5, 3)

Theorem 3.1 The largest size of an n-cap in AG(5, 3), with at most 18 points in every
hyperplane, is 45.

Moreover, every 45-cap in AG(5, 3) contains at least one 18-, 19-, or 20-hyperplane.

Proof: This follows from [2, Theorem 5]. More precisely, the size of a cap in AG(k, q),
having at most a c-hyperplane, is at most qk(1 + cq)/(qk + cq).

An elementary counting argument shows that there is at least one 18-, 19- or 20-
hyperplane. 2

Lemma 3.2 Let K be a 45-cap in AG(5, 3). Let P (i) = (i− r1)(i− r2)(i− r3), for some
constants r1, r2, r3. Then we have the following equality:∑

i

P (i)ni = 1106820 + (3− r1 − r2 − r3)79200

+(r1r2 + r2r3 + r1r3 + 1− r1 − r2 − r3)5445− 363r1r2r3. (3)

Proof: We have the following equalities:∑
i

ni = 363,∑
i

ini = 45× 121,

∑
i

(
i

2

)
ni =

(
45

2

)
40,

∑
i

(
i

3

)
ni =

(
45

3

)
13.
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Equation (3) follows from

P (i) = 6

(
i

3

)
+ (6− 2r1 − 2r2 − 2r3)

(
i

2

)
+ (r1r2 + r2r3 + r1r3 + 1− r1 − r2 − r3)i− r1r2r3.

2

Lemma 3.3 Assume there exists a 45-cap K in AG(5, 3), for which there exists a hy-
perplane which intersects in more than 18 points. Then we can always find either a 5-,
6-, or 7-hyperplane parallel to a 20-hyperplane or a 7- or 8-hyperplane parallel to a 19-
hyperplane.

Proof: Let P (i) = (i−11)(i−15)(i−16), then equation (3) gives
∑

i P (i)ni = 0. Assume
that there are no 20-hyperplanes, but there is a 19-hyperplane. Suppose there are no 7-
hyperplanes. An 8-hyperplane and its parallel 18- and 19-hyperplane contribute -30 to (3)
(using (r1, r2, r3) = (11, 15, 16)), while a 9-hyperplane and two parallel 18-hyperplanes,
and three parallel 15-hyperplanes contribute zero to (3). All other triples of parallel
hyperplanes contribute a positive number to (3). Hence, if there is no 8-hyperplane, there
are only 9-, 15- or 18-hyperplanes; but this contradicts the assumption that there is a
19-hyperplane. So, parallel to some 19-hyperplane, there is a 7- or a 8-hyperplane.

Suppose there is a 20-hyperplane. A 5-hyperplane or a 6-hyperplane is always parallel
to a 20-hyperplane. A 7-hyperplane is parallel to a 19- or a 20-hyperplane. So assume
n5 = n6 = n7 = 0. As a 20-hyperplane and its two parallel hyperplanes always induce
a positive contribution to (3) for (r1, r2, r3) = (11, 15, 16), there must be a negative
contribution. As above, this is only possible for a parallel 8-, 18-, 19-hyperplane triple. 2

Lemma 3.4 There is no 45-cap in AG(5, 3) for which there exists a hyperplane inter-
secting in more than 18 points.

Proof: ¿From [9], we know that there is a unique 20-cap in AG(4, 3) and a computer
search for all 19-caps in AG(4, 3) showed that there is a unique 19-cap.

Using a similar computer search as in [6], we eliminated all cases occurring in Lemma
3.3. 2

4 The classification of the 45-caps in AG(5, 3)

Remark 4.1 There exist 45-caps in AG(5, 3), since the Hill-cap is a 56-cap in PG(5, 3)
which contains an 11-hyperplane [8]. Deleting such an 11-hyperplane yields a 45-cap in
AG(5, 3).
We are going to prove that every 45-cap in AG(5, 3) is obtained in that way.

¿From the preceding lemma, we know that there are at most 18-hyperplanes.

Lemma 4.2 Let K be a 45-cap in AG(5, 3). Then every hyperplane intersects K in either
9, 15 or in 18 points, and the spectrum of K is (n9, n15, n18) = (55, 198, 110).
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Proof: Let P (i) = (i − 11)(i − 15)(i − 16), then equation (3) gives
∑

i P (i)ni = 0. We
count the contribution of parallel hyperplane triples to this sum. Only a 9-hyperplane par-
allel to two 18-hyperplanes and three parallel 15-hyperplanes give a zero contribution. All
other contributions are strictly positive. Hence we have only 9-, 15- and 18-hyperplanes,
and n18 = 2n9.

Take P (i) = (i− 11)(i− 16)(i− 16), then equation (3) gives −98n9 + 4n15 + 28n18 =
−1518. Using n9 + n15 + n18 = 363, we get the spectrum of K. 2

Definition 4.3 ([4]) We define for a k-cap K in AG(5, 3), an intersection square in
the following way. Take a hyperplane K1 and its parallel hyperplanes K2 and K3. Take
another hyperplane H1 together with its parallel hyperplanes H2 and H3. An intersection
square determined by H1 and K1 is the 3 × 3 matrix [lij], where lij = |Lij ∩ K|, with
Lij = Hi ∩Kj.

Remark 4.4 We remark that a cap has in general several intersection squares. The hy-
perplanes L12 ∪ L21 ∪ L33, L13 ∪ L22 ∪ L31 and L23 ∪ L32 ∪ L11 form a parallel hyperplane
triple, and also L11 ∪ L22 ∪ L33, L21 ∪ L32 ∪ L13 and L31 ∪ L12 ∪ L23 form a parallel hy-
perplane triple. Actually, these four parallel hyperplane triples correspond to the parallel
hyperplane triples going through the four solids containing the plane at infinity, contained
in H1 ∩K1.

Lemma 4.5 If K is a 45-cap in AG(5, 3) containing a 9-solid, then K has an intersection
square of the form

9 0 9

3 3 3 (4)

6 6 6

Proof: Put l11 = 9. By Lemma 4.2, a 9-solid is contained in four 18-hyperplanes.
Hence, l11 + l12 + l13= l11 + l22 + l33= l11 + l21 + l31= l11 + l23 + l32 = 18. Lemma 4.2
implies that an 18-hyperplane is parallel to a 9-hyperplane and an 18-hyperplane. Using
a computer program, we looked for all possibilities to complete our intersection square.
Up to equivalence, the only possibility is the intersection square (4). 2

Lemma 4.6 If K is a 45-cap in AG(5, 3), then, up to equivalence, the possible intersec-
tion squares are
9 0 9 2 8 8 3 3 3 1 7 7 5 5 5
3 3 3, 8 5 5, 6 6 6, 7 4 4, 5 5 5
6 6 6 5 2 2 6 6 6 7 4 4 5 5 5

.

Proof: In this argument, we heavily rely on Lemma 4.2, stating that there are only
9-, 15-, and 18-hyperplanes. Let S be a a-solid and consider the intersection square
determined by S. Let n′i denote the number of i-hyperplanes in the intersection square
which contain S. Then clearly n′9 +n′15 +n′18 = 4. Also summing the other eight entries in
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the intersection square we find (9−a)n′9 +(15−a)n′15 +(18−a)n′18 = 45−a. Eliminating
n′9 from these two equations we find that 2n′15 + 3n′18 = 3 + a.

A 0-solid has to be contained in an 18-hyperplane and in three 9-hyperplanes. The
solids in the 18-hyperplane, parallel to the 0-solid, have to be 9-solids. Hence we are
in the case of Lemma 4.5 and, up to equivalence, the only possible intersection square
containing a 0-solid is (4).

Assume l11 = 1, we try to complete this to a valid intersection square. By the reasoning
above, we can assume that there are no 0-solids in the intersection square. Also, we may
assume that we have no 9-solids in the intersection square (Lemma 4.5). A 1-solid has to
be contained in two 15-hyperplanes and in two 9-hyperplanes. Hence, we may assume that
l11 + l12 + l13 = l11 + l21 + l31 = 15. If we put (l12, l13) = (6, 8), then we cannot complete
this to a valid intersection square, taking into consideration Lemma 4.2. So assume
l12 = l13 = l21 = l31 = 7. A 7-solid has to be contained in two 15-hyperplanes and in two
18-hyperplanes. Using l12+l21+l33 ∈ {15, 18} and l11+l22+l33 = 9, we are reduced to two

possibilities, namely
1 7 7 1 7 7
7 7 or 7 4
7 1 7 4

. In the former case, the 7-solid corresponding

to L12 lies already in two 15-hyperplanes L12 ∪ L21 ∪ L33 and L11 ∪ L12 ∪ L13; hence the
other hyperplanes containing this solid have to be 18-hyperplanes. So l32 = l23 = 4. But
then the hyperplane L31 ∪L32 ∪L33 is a 12-hyperplane; contradicting Lemma 4.2. In the
latter case, l12 + l22 + l32 has to be 15 or 18. So, l32 is 4 or 7. If l32 = 7, then l23 = 1 and
l13 + l23 + l33 = 12. This contradicts Lemma 4.2. Hence l32 = 4 and l23 = 4.

By a similar reasoning, we determined, up to equivalence, the possible intersection

squares containing a 2-solid or a 3-solid:
2 8 8 3 3 3
8 5 5, 6 6 6
5 2 2 6 6 6

, under the assumption

that there are no 0- or 1-solids, and, in the latter case, 2-solids.
Assume l11 = 4. Assume that we have no solids intersecting in less than 4 points. A

4-solid is contained in a 9-hyperplane, two 15-hyperplanes and an 18-hyperplane. But,
since every entry in our intersection square is at least 4, we cannot obtain a 9-hyperplane.

If we assume that there are no solids sharing less than 5 points with the 45-cap, the

only possible intersection square containing a 5-solid is
5 5 5
5 5 5
5 5 5

.

A solid which intersects the cap in more than 5 points, has to be parallel with a solid
intersecting in at most 5 points. 2

4.1 Suppose there is no solid intersecting in 9 points

If there are no 9-solids, Lemma 4.6 yields that the 9 points of K lying in a 9-hyperplane
form a (9, 5)-set. Clearly, a solid in H0, the empty hyperplane, is contained in either one
9- and two 18-hyperplanes or in three 15-hyperplanes. Since (n9, n15, n18) = (55, 198, 110)
(Lemma 4.2), the first possibility occurs for 55 solids; the second occurs for the remaining
66 solids in H0.
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Let H1 be a 9-hyperplane and let δ = H0 ∩H1. Denote by Pδ and Qδ the two points
in δ which extend K ∩ H1 to an (11,5)-set in H1 (Section 2). Now define L to be the
union of all {Pδ, Qδ}, where δ runs over all solids in H0 contained in 9-hyperplanes. We
are going to prove that K ∪L is a (56,20)-set, and by [10], such a set is always a cap. Let
H2 and H3 be the other hyperplanes through δ = H0 ∩H1.

We will consider the hyperplanes in PG(5, 3), hence in the type of a hyperplane, we
will have a fourth entry corresponding to H0.

Lemma 4.7 The sets (K ∩H2) ∪ {Pδ, Qδ} and (K ∩H3) ∪ {Pδ, Qδ} are (equivalent to)
(20, 8)-sets in PG(4, 3).

Proof: Let P1 and Q1 be the points which extend K ∩ H2 to a (20,8)-set. Consider a
plane π in δ which contains Pδ and Qδ. ¿From Remark 2.2 and Table 1 (G), we know that
ϕ(H1) is of type (3, 3, 3, 0). ¿From the third intersection square of Lemma 4.6, we obtain
that for the 18-hyperplane H2 parallel to H1, we have that ϕ(H2) is of type (6, 6, 6, 0).
Now it follows from Remark 2.2 and Table 1 (D) that π also contains the points P1 and
Q1. Letting π vary in δ, we have that Pδ, Qδ, P1 and Q1 are collinear.

Assume {Pδ, Qδ} 6= {P1, Q1}. Let further Pδ 6∈ {P1, Q1} and consider a plane π in
H0 containing Pδ and none of the remaining three points. A similar reasoning as above
shows that, if ϕ is the projection from π, the line ϕ(H1) is of type (4,4,1,0) while ϕ(H2)
is of type (8,8,2,0) or (8,5,5,0), by Table 1 and Remark 2.2. This contradicts Lemma 4.6
since (4, 4, 1) appears in the fourth intersection square while (8, 8, 2) and (8, 5, 5) appear
in the second intersection square. 2

Now let H ′
1 and H ′′

1 be 9-hyperplanes. Let K ∩H ′
1 and K ∩H ′′

1 be extended to (11,5)-sets
by the points P ′, Q′ and P ′′, Q′′, respectively. Set π = H0∩H ′

1∩H ′′
1 . Consider a projection

ϕ from the plane π. Assume |π ∩ {P ′, Q′}| = 2, then Table 1 and Remark 2.2 give that

the type of ϕ(H ′
1) is (3, 3, 3, 0). Hence π determines the intersection square

3 3 3
6 6 6
6 6 6

, and

the only possibility for H ′′
1 is a 15- or 18-hyperplane; a contradiction.

Hence |π ∩ {P ′, Q′}| = |π ∩ {P ′′, Q′′}| = 0 or 1. For, if |π ∩ {P ′, Q′}| = 1, then there
is a 1 − 4 − 4-parallel solid triple in H ′

1 (Table 1 (F) and Remark 2.2). Then the fourth
intersection square of Lemma 4.6 shows that also in H ′′

1 , there must be a 1−4−4-parallel
solid triple. So also here, using Table 1 (F) and Remark 2.2, |π ∩ {P ′′, Q′′}| = 1. Let us
assume that π contains the points P ′ and P ′′ and does not contain the points Q′ and Q′′.
Our next goal is to prove that P ′ = P ′′.

By Table 1 and Remark 2.2, the types of ϕ(H ′
1) and ϕ(H ′′

1 ) are (4,4,1,0) and |K∩H ′
1∩

H ′′
1 | = 1 since a 4-solid does not lie in two 9-hyperplanes (Lemma 4.6). Set K∩H ′

1∩H ′′
1 =

{R}. Moreover the other two hyperplanes through H ′
1 ∩H ′′

1 are 15-hyperplanes (Lemma
4.6).

Assume that P ′ 6= P ′′ and consider another projection ϕε from a plane ε in H ′
1 ∩H ′′

1

which contains P ′ and does not contain P ′′ or R.
We show that the type of L1 = ϕε(H

′
1) is (4,3,1,1). Consider the (11, 5)-set (K∩H ′

1)∪
{P ′, Q′} in H ′

1 which is the extension of the (9, 5)-set K∩H ′
1. Every solid in H ′

1 through ε
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intersects this (11, 5)-set in 5 or 2 points (Section 2). Going from the (11, 5)-set in H ′
1 to

the (9, 5)-set K ∩H ′
1, we cancel the point P ′ which lies in ε. It is impossible that we have

a 0-entry in the type of L1, since a (9,5)-set in PG(4, 3) has exactly one 0-solid H0 ∩H ′
1

and ε 6⊆ H0 ∩H ′
1. Hence, a 2-intersection of the (11, 5)-set becomes a 1-entry for the type

of L1; and a 5-intersection of the (11, 5)-set becomes a 4- or a 3-entry for the type of L1.
Now, the only possibility for the type of L1 is (4, 3, 1, 1) since the total of the 4 numbers
must be 9.

We now show that the type of L2 = ϕε(H
′′
1 ) is (5,2,1,1) or (4,2,2,1). Consider the

(11, 5)-set (K ∩ H ′′
1 ) ∪ {P ′′, Q′′} in H ′′

1 which is the extension of the (9, 5)-set K ∩ H ′′
1 .

Now ε does not contain a point of the (11, 5)-set in H ′′
1 . Note that 〈ε, P ′′〉, which is the

solid H ′
1∩H ′′

1 , does not contain Q′′, since Q′′ 6∈ π. Hence the two solids 〈ε, P ′′〉 and 〈ε, Q′′〉
are different, and when we project H ′′

1 ∩ K from ε onto L2, two entries of the type of
L2 differ a unit from the number of points of the (11,5)-set in H ′′

1 in the corresponding
solids through ε in H ′′

1 . As in the preceding paragraph, there is no 0-solid through ε in
H ′′

1 , so we need to decrease two different entries of the (5, 2, 2, 2)-type corresponding to
the (11, 5)-set by one, giving (5, 2, 1, 1) or (4, 2, 2, 1).

Case 1. Construct PG(2, 3) which represents the quotient geometry of ε. First sup-
pose we have a (4,3,1,1)- and a (4,2,2,1)-line. We can fix the entries of the type of L1 and
L2 without losing generality.

Namely, for the points on L1, this is certainly true. Then we can use an elation with
center L1 ∩ L2 and axis L1 to choose the weight of a point y on L2 \ L1. Next use the
involutory perspectivity with axis L1 and center y to choose the weights of the other
points on L2.

Since we projected from a plane ε which is skew to the 45-cap, all lines must sum to
0 (mod 3), because hyperplanes intersect K in 9, 15 or 18 points.

Consider the following picture of PG(2, 3) where we number the points from 1 to 13.

10 11 12 13
1 2 3
4 5 6
7 8 9

where PG(2, 3) is considered to be the union of the affine plane of the points represented
by the 3 × 3-grid of points 1, . . . , 9 and the line at infinity 10, . . . , 13, with 10 the point
at infinity of the vertical lines of the 3× 3-grid, 12 the point at infinity of the horizontal
lines of the grid, 13 the point at infinity of the affine lines {1, 5, 9}, {2, 6, 7}, {3, 4, 8}, and
11 the point at infinity of the affine lines {3, 5, 7}, {1, 6, 8}, {2, 4, 9}.

Completing the picture of PG(2, 3) and calculating the weights of the points modulo 3,
we obtain a table of the following type where the (4, 3, 1, 1)-line L1 is the line at infinity
and where the points 12, 1, 2, 3 of the description above form the line L2, and where
a ∈ GF (3).

0 1 1 1
2 2 1
a a a− 1

1− a 1− a −a
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If we now fill in the explicit possibilities for the weights of the points of PG(2, 3),
taking into account that every line must have a total weight of 9, 15 or 18; only a limited
number of possibilities occur. If one considers such a possibility, one finds that there is a
(3,3,2,1)-line L3.

This line defines a 9-hyperplane intersecting the 45-cap in a (9, 5)-set. This is always
uniquely extendable to an (11,5)-set intersecting every solid in 2 or 5 points. Since the
line is a (3,3,2,1)-line, necessarily, the plane ε must contain the two points which extend
the (9,5)-set to the (11,5)-set; but then the projection from ε would imply that the line
L3 is a (3,3,3,0)-line since we lose two points in a 5-solid and in a 2-solid to the (11, 5)-set.

So we get a contradiction.
Case 2. Now, suppose we have a (4,3,1,1)- and a (5,2,1,1)-line. Using the same argu-

ments, we obtain a contradiction. 2

Hence, the following lemma is valid.

Lemma 4.8 For every 9-hyperplane H, we have |L ∩H| = 2.

Denote by δi, i = 1, . . . , 55, the 55 solids in H0 that are contained in 9-hyperplanes.
We have |L ∩ δi| = 2 by Lemma 4.8 and |L ∩ δi ∩ δj| = 0 or 1 when i 6= j; see the
discussion following the proof of Lemma 4.7. Let L ∩ δ1 = {P, Q}. There exist nine
planes πi, i = 1, . . . , 9, in δ1 that contain P and do not contain Q. If we project from
πi; a 9-hyperplane through πi is projected onto a (4, 4, 1, 0)-line (Table 1 (F) and Remark
2.2). From the fourth intersection square of Lemma 4.6, πi lies in a second 9-hyperplane;
so πi lies in a second solid δi+1. Consequently, each point of L is on 10 of the solids δi,
i = 1, . . . , 55. Counting in two ways the number of flags (P, δ), where P ∈ L and P ∈ δ
with δ ∈ {δ1, . . . , δ55}, we get 10 · |L| = 2 · 55. Therefore |L| = 11.

Lemma 4.9 The set L is an (11, 5)-set in H0.

Proof: All multiplicities in this proof are meant with respect to the 11-set L defined on
the points of H0.

Consider an empty plane π, with respect to L, and assume it lies in a 9-hyperplane of
K. There is a one-to-one correspondence between the pairs of L and the fifty-five 2-solids
to L which are the solids at infinity of the 9-hyperplanes of K. It follows from Lemma 4.6
that such an empty plane π is contained in two further 2-solids. For, the type of the
projection from π of the 9-hyperplane is (5, 2, 2, 0) (Table 1 (E) and Remark 2.2), so it
determines the 3× 3 intersection square only containing the numbers 2, 5 and 8, and this
intersection square has three parallel classes containing 9-solids.

Assume that δ is a w-solid with 2 < w ≤ 9; so there are at least two points of L not
in δ. This w-solid is not contained in a 9-hyperplane with respect to K (Lemma 4.8).
Fifty-five 2-solids are in one-to-one correspondence with the pairs of L. Hence such a
2-solid containing two points from L \ δ intersects δ in a 0-plane π. By the preceding
paragraph, π is contained in three 2-solids and one w-solid which is forced to be a 5-solid.

To complete the proof, it remains to be checked that there cannot be 10- or 11-solids
with respect to L. Assume there exists a 10- or an 11-solid S. No three of the points of

10



L ∩ S can be collinear, since there is a bijection between the fifty-five 2-solids and the
pairs of L. Because there are at most 10 points on a cap in a solid, this shows that we
cannot have 11-solids. Hence S is a 10-solid, and S ∩ L is an elliptic quadric Q. Every
pair of the 10-solid S is contained in a 2-solid, which necessarily intersects S in a plane.
This plane shares already 2 points with Q, so shares at least 4 points with Q. But this
plane is contained in a 2-solid; a contradiction. 2

Theorem 4.10 The set K ∪ L is a (56, 20)-set.

Proof: Each solid in H0 contained in two 18- and one 9-hyperplane contains 2 points
from L (Lemma 4.8) and each solid in H0 contained in three 15-hyperplanes contains 5
points from L (Lemma 4.9). 2

The 56-cap of Hill is the only (56, 20)-set in PG(5, 3) [10]. The 11-hyperplanes of
the 56-cap are the tangent hyperplanes to the elliptic quadric containing this 56-cap,
with the tangent point belonging to the 56-cap. Since the group stabilizing the 56-cap
acts transitively on the points of the 56-cap [7]; all these 11-hyperplanes are projectively
equivalent; hence, the corresponding 45-caps are unique.

This finishes the discussion of this case.

4.2 Suppose there are 9-solids

Embed AG(5, 3) in PG(5, 3) by adding the hyperplane H0 at infinity. Then H0 is a
hyperplane skew to this 45-cap in PG(5, 3). We identify the affine points with the corre-
sponding projective points.

By Lemma 4.5, we have two parallel 9-solids S1 and S2, lying in a hyperplane H ≡
PG(4, 3). By Lemma 2.1, a 9-cap in AG(3, 3) is always obtained by deleting a 1-plane
of an elliptic quadric in PG(3, 3). Hence, working in the projective space, Si ∩ K is an
elliptic quadric Qi minus a point pi, i = 1, 2. And p1 and p2 have the same tangent plane,
lying in H0, to respectively Q1 and Q2.

Suppose there is another 9-solid contained in H. Then, this solid contains at least 5
points of one of the two elliptic quadrics, so contains the elliptic quadric completely.

Denote by ni the number of i-solids contained in H. Then we just showed that n9 = 2.
We now will use parallel classes of solids in H \H0. A parallel class of solids in H \H0

consists of three solids of H\H0 intersecting in a fixed plane of H∩H0. Every parallel class
of solids of H \H0 comes from an intersection square of Lemma 4.6. We count how many
intersection squares of every type there are. The intersection squares of Lemma 4.6 differ
from each other in the number of parallel classes of 15-hyperplanes they contain. Note
that the latter intersection square of Lemma 4.6 only containing the number 5 cannot
determine a parallel class in H since the three parallel solids in H would only contain 15
points in total, instead of the 18 points of K ∩H. Letting the plane π which determines
the intersection square (see Remark 4.4) vary in the solid at infinity H ∩H0; we denote
by ai the number of intersection squares with i parallel classes of 15-solids (i = 0, . . . , 3);
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hence a0, a1, a2, respectively a3, denote the number of intersection squares of the first,
second, fourth, respectively third, type as in Lemma 4.6.

We have

a0 + a1 + a2 + a3 = 40 (5)

a1 + 2a2 + 3a3 = 66 (6)

where the first number equals the number of planes in the solid at infinity of H0, and
where the second number is equal to 66; the total number of parallel classes of 15-solids
(Lemma 4.2). Let b1 be the number of parallel 2− 8− 8-solid triples in H and let b2 be
the number of parallel 5− 5− 8-solid triples in H. Then

b1 + b2 = a1 (7)

since these two types of solid triples only occur in intersection squares of the second type
in Lemma 4.6.

We now express the spectrum of the 18-cap in H in terms of ai and bi: n0 = 2 since
we have one 0-solid at infinity and one 0-solid corresponding to the type (9, 0, 9). Also
n1 = 0 since only the fourth intersection square of Lemma 4.6 contains a 1-solid. And in
this intersection square, a 1-solid only lies in 9- and 15-hyperplanes, but this contradicts
the fact that H contains 18 points of the 45-cap. Similarly, n3 = 0 since a 3-solid only
lies in the first and third type of intersection squares of Lemma 4.6. Only in the first
type of intersection square, a 3-solid lies in a 18-hyperplane, but then the parallel class
determined by the 3-solid would give rise to a 9-solid different from S1 and S2. This was
excluded in the beginning of this section. And n2 = b1, since the only way of having a
2-entry in the type of an 18-hyperplane is (2, 8, 8), which occurs b1 times; n4 = a2 since
a 4-solid only lies in the fourth square of Lemma 4.6 and this determines a (7, 7, 4)-type
in H; n5 = 2b2 since a 5-solid, contained in H, lies only in the second intersection square
of Lemma 4.6 and such a square intersects H in a (5,5,8)-triple containing two 5-solids;
n6 = 3a3+3(a0−1), since the third intersection square yields three 6-solids in H and there
is one intersection square of the first type, which determines the (9, 0, 9)-type, the other
intersection squares of the first type yield three 6-solids in H; n7 = 2a2 since a 7-solid lies
only in the fourth intersection square of Lemma 4.6, and such a square determines the
(7, 7, 4)-type in H; n8 = 2b1 + b2 since there are b1 (2, 8, 8)-triples and b2 (5, 5, 8)-triples
giving respectively two and one 8-solids; n9 = 2.

Applying (1) to H ∩K, we have∑
i(i− 1)ni = 18× 17× 13 (8)∑

i(i− 1)(i− 2)ni = 18× 17× 16× 4. (9)

Now (8)− (9)/12− 57× (5)− (6)− 58× (7) shows that a0 = 0; while it should be at
least one.

We have shown the following lemma.

Lemma 4.11 There is no 45-cap in AG(5, 3) having a 9-solid.
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We have discussed all possible configurations that can occur in a 45-cap. Only the 45-cap
arising from deleting an 11-hyperplane from a 56-cap in PG(5, 3) remains. This proves
Theorem 1.2. 2
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