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Abstract

We give some variants of a new construction for caps. As an ap-
plication of these constructions we obtain a 1216–cap in PG(9, 3) a
6464–cap in PG(11, 3) and several caps in ternary affine spaces of
larger dimension, which lead to better asymptotics than the caps con-
structed by Calderbank and Fishburn [1]. These asymptotic improve-
ments become visible in dimensions as low as 62, whereas the bound
from [1] is based on caps in dimension 13, 500.

1 Introduction

Let PG(n, q) be the projective space of dimension n over the finite field
IFq. A k–cap K in PG(n, q) is a set of k points, no three of which are
collinear [10]. The maximum value of k for which there exists a k–cap in
PG(n, q) is denoted by m2(n, q). Denote by maff

2 (n, q) the corresponding
value in AG(n, q). As m2(n, 2) = maff

2 (n, 2) = 2n we can and will assume
q > 2 in the sequel. The numbers m2(n, q), m

aff
2 (n, q) are only known, for

arbitrary q, when n ∈ {2, 3}, namely, m2(2, q) = maff
2 (2, q) = q + 1 if q

is odd, m2(2, q) = maff
2 (2, q) = q + 2 if q is even, and m2(3, q) = q2 + 1,

maff
2 (3, q) = q2. Aside of these general results the precise values are known

only in the following cases: m2(4, 3) = maff
2 (4, 3) = 20 [13], m2(5, 3) = 56

[7], maff
2 (5, 3) = 45 [5], and m2(4, 4) = 41 [3]. Finding the exact value for

m2(n, q) or maff
2 (n, q), n ≥ 4 seems to be a very hard problem [8, 9]. As

an application of our new construction we obtain improved lower bounds on
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some values m2(n, 3). The first examples of improvements are a 1216–cap in
PG(9, 3) and a 6464–cap in PG(11, 3).

A natural asymptotic problem is the determination of

µ(q) = lim sup
n→∞

logq(m2(n, q))

n
= lim sup

n→∞

logq(m
aff
2 (n, q))

n
.

It is well-known (and also will be explained later) that for every cap A in
AG(n, q) we have the inequality µ(q) ≥ logq(|A|)/n. As a cap cannot be larger
than its ambient space, clearly µ(q) ≤ 1. It is an interesting open problem to
decide if µ(q) < 1. The affine part of an ovoid in PG(3, q) shows µ(q) ≥ 2

3
.

The affine points of a family of caps in PG(6, q) from [2] yield the slightly

better bound µ(q) ≥ logq(q
4+q2−1)
6

. No better lower bound seems to be known
for general q, except for the ternary and quaternary cases. It follows from [1]
that µ(3) ≥ 0.7218 . . .. The 120 affine points of the 126-cap in PG(5, 4) found

by Glynn [4, 6] show that µ(4) ≥ 0.3 + log4(15)
5

= 0.6906 . . . The construction
given in this article can be seen as a generalization of one of the constructions
of Calderbank and Fishburn [1]. Although the construction works for general
q all our applications are in the ternary case. Our constructions of caps in
ternary affine spaces lead to a better bound for µ(3). The best bound proved
in this article is µ(3) ≥ 0.724851 . . ..

This leaves us with two research problems. Firstly to improve the bound
on µ(3) by finding better capsets (for a definition see Definition 9), secondly
to find good caps to which we can apply the construction for q > 3.

2 The product construction

A cap A ⊂ AG(n, q) is a subset A ⊂ IF n
q such that the points (1 : a), a ∈ A

form a cap in PG(n, q). Let B ⊂ IFm+1
q be a set of representatives of a

cap in PG(m, q). For every 0 6= a ∈ IF n
q denote by 〈a〉 the 1-dimensional

subspace IFqa. This is a point in PG(n− 1, q). For 0 /∈ A ⊂ AG(n, q) denote
〈A〉 = {〈a〉|a ∈ A}.

Theorem 1 (the product construction). Let A ⊂ AG(n, q) be a cap and
B ⊂ IFm+1

q be a set of representatives of a cap 〈B〉 ⊂ PG(m, q). Then (A :
B) := {(a : b)|a ∈ A, b ∈ B} ⊂ PG(n + m, q) is an (|A| · |B|)-cap. If 〈B〉 ⊂
AG(m, q), then (A : B) ⊂ AG(n+m, q).
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Theorem 1 is due to Mukhopadhyay [12]. The special case when n = 1
and A consists of two points in AG(1, q) = IFq yields a 2|B|-cap in AG(m+
1, q). This is the well-known doubling construction. The following is a
generalization of the product construction:

Theorem 2 (generalized product construction). Let A1, . . . , Ac ⊂ AG(n, q)
be caps and B ⊂ IFm+1

q a set of representatives of a cap 〈B〉 ⊂ PG(m, q),
partitioned as B = B1∪· · ·∪Bc. Then

⋃c
i=1(Ai : Bi) is a cap in PG(n+m, q).

Proof. Each (Ai : Bi) is a cap by Theorem 1. The second coordinate shows
that the union is a cap.

If in Theorem 2 we choose A1 = A2 = · · · = Ac Theorem 1 is obtained.
We study the generalized product construction in the hope to obtain products
which are not complete.

Let a generalized product cap be given. We ask when a point (u : v) will
be an extension point. The case v = 0 is easily decided:

Theorem 3. A point (u : 0) extends the generalized product cap (Theorem 2)
if and only if (0 : u) extends all affine caps (1 : Ai).

Proof. (u : 0) is not an extension point if and only if we have a relation

(u, 0) = λ(a, b) + λ′(a′, b′).

We must have b = b′ ∈ Bi for some i and λ+λ′ = 0, equivalently u = λ(a−a′),
where a, a′ ∈ Ai for some i. This is precisely the condition that (0 : u) is not
an extension point of (1 : Ai).

We see that in the situation of Theorem 3 the generalization of the prod-
uct construction presents no advantage, as we get caps of same size with
the ordinary product construction (Theorem 1) by choosing A1 = · · · = Ac.
Based on Theorem 1, Theorem 3 leads to a generalization of the product
construction, which we proved in [2]. An application to ovoids yields Segre’s
recursive construction [14].

Consider now points (u : v), where v 6= 0. Assume also u 6= 0. Such a
point is not an extension point if and only if there is a relation

(u, v) = λ(a, b) + λ′(a′, b′)

The following strategy will make sure this cannot happen:
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• Choose u 6= 0 and the Ai such that 〈u〉 /∈ 〈Ai〉 for all i and such that
for all a ∈ Ai, a′ ∈ Aj, i 6= j, 〈a〉 6= 〈a′〉, the points 〈u〉, 〈a〉, 〈a′〉 are
not collinear. In the above relation this forces {a, a′} ⊆ Ai for some i.

• Choose v 6= 0 such that 〈v〉 /∈ 〈B〉 and 〈Bi〉 ∪ {〈v〉} is a cap for all i.

If these conditions are satisfied, then (u : v) is an extension point. The
first condition will be easier to satisfy for a small number of components
(small c), the second condition is easier to satisfy when c is large. Let now
A0 ⊂ AG(n, q) \ {0} be a cap and B0 ⊂ IFm+1

q a set of representatives of a
cap such that (u : v) satisfies the conditions above for all u ∈ A0, v ∈ B0.
Then (A0 : B0) is a cap by Theorem 1. We want the union of the generalized
product cap and (A0 : B0) to be a cap. It remains to make sure that two
different points of (A0 : B0) can never be collinear with a point from the
generalized product cap. A sufficient condition is that for every i 6= 0 no two
different points of 〈A0〉 are collinear with a point from 〈Ai〉. This motivates
the following definition:

Definition 4. Let Ai ⊂ AG(n, q), i = 0, . . . , c, be caps, where 0 /∈ Ai. We
say that (A0, {Ai}ci=1) satisfy property (EL) if the following hold:

(1) 〈A0〉 ∩ 〈Ai〉 = ∅ for all i > 0,

(2) If ai ∈ Ai, then 〈ai〉 is not collinear with two different points of 〈A0〉.

(3) If u ∈ A0, a ∈ Ai, a′ ∈ Aj, i 6= j; i, j > 0, 〈a〉 6= 〈a′〉, then 〈u〉, 〈a〉,
〈a′〉 are not collinear.

Let B ⊂ PG(m, q) be a system of representatives of a cap 〈B〉 ⊂ PG(m, q),
partitioned in the form B = B1 ∪ · · · ∪ Bc, and B0 ⊂ PG(m, q) a system
of representatives of a cap 〈B0〉, which is disjoint from 〈B〉 and such that
〈Bi〉 ∪ {〈v〉} is a cap for all i > 0 and all v ∈ B0. We say that (B0, {Bi}ci=1)
satisfy property (ER).

Observe that it can happen that two different elements u 6= u′ of A0 are
scalar multiples of each other and therefore give rise to the same point 〈u〉 =
〈u′〉 ∈ PG(n− 1, q). Note also that 〈A0〉 need not be a cap in PG(n− 1, q).

We have proved the following above:
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Theorem 5. Let 0 /∈ Ai ⊂ AG(n, q), i = 0, 1, . . . , c be caps such that (EL)
is satisfied. Let B0, B ⊂ IFm+1

q be systems of representatives of caps, B =
B1 ∪ · · · ∪Bc, satisfying (ER). Then K =

⋃c
i=0(Ai : Bi) ⊂ PG(n+m, q) is a

cap. If both 〈B0〉 and 〈B〉 are contained in AG(m, q) (equivalently: avoiding
a hyperplane H ⊂ PG(m, q)) or the Ai are avoiding a hyperplane of AG(n, q)
(different from the one at infinity), then K ⊂ AG(n+m, q).

It is a strength of Theorem 5 that the components can be constructed
separately. The cap constructed in Theorem 5 has

∑c
i=0 |Ai||Bi| points. If

all Ai, i > 0, have equal size |A| this simplifies to |A0||B0|+ |A||B|.

3 The case of the doubled Hill cap

Particularly fruitful applications of Theorem 5 are obtained when q = 3,
n = 6 and A1, A2 are two versions of the doubled Hill cap.

Definition 6. Consider the following subsets of IF 6
3 : D consists of the weight

3 vectors whose supports form the blocks of a fixed 2-(6, 3, 2) design, D′ con-
sists of the remaining vectors of weight 3. Let R be the vectors of weight 6
with an even number of entries 2 and R′ the remaining vectors of weight 6.
Also, A0 consists of the vectors of weight 1. Finally

H = D ∪R and H ′ = D′ ∪R.

Then both H and H ′ are versions of the doubled Hill cap [4, 1] (a 112-cap
in AG(6, 3)). We use A1 = H, A2 = H ′. Observe |A1 ∩ A2| = 32.

Lemma 7. H +H ′ = IF 6
3 \ A0

Proof. It is in fact clear that elements of weight 1 are not in D+R or D′+R
or D + D′. A routine check shows that all other elements have one of these
forms.

Observe that A0 itself is a doubled cap and hence a 12-cap in AG(6, 3).
We can use A0 in Theorem 5. It remains to find caps 〈B〉 in PG(m, q) or in
AG(m, q), to partition them into two suitable parts and to find sets B0.

The smallest case is m = 1. Both B1 and B2 consist of one point, B0 has
one element in the affine case, two elements in the projective case. Theorem 5
yields a 236-cap in AG(7, 3) (see [1]) and a 248-cap in PG(7, 3) (see [4]).
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Consider case m = 3. We wish to partition the ovoid into two parts.
Describe the field IF9 by the polynomial X2 − X − 1, in other words IF9 =
IF3(ε), where ε2 = ε+1. Represent the affine points of the ovoid as (x : N(x) :
1), where x ∈ IF9 and N(x) = x4 ∈ IF3. Let Q = {±1,±ε2} (the squares)
and N = {±ε,±(ε − 1)} (the nonsquares in IF9). The affine points of the
ovoid therefore have the forms (0 : 0 : 1), (Q : 1 : 1), (N : 2 : 1), the point
at infinity is (0 : 1 : 0) (here the first coordinate represents two coordinates).
Choose

B1 = {(0, 0, 1)} ∪ {(Q, 1, 1)} and B2 = {(0, 1, 0)} ∪ {(N, 2, 1)}

It is easy to see that the points which form extensions both of 〈B1〉 and of
〈B2〉 are the eight points of the form

(Q : 0 : 1) and (N : 1 : 0)

These extension points form an 8-cap. Theorem 5 yields a cap of size 112 ·
10 + 12 · 8 = 1216 in PG(9, 3).

Here is an application when m = 5. We choose B to be a set of represen-
tatives of the Hill cap, partitioned such that 〈B1〉 = 〈R〉 and 〈B2〉 = 〈D〉.
It is clear that the 16 point from 〈R′〉 form an extension cap of 〈B1〉 and of
〈B2〉. This yields a cap of size 112 · 56 + 12 · 16 = 6464 in PG(11, 3).

4 Recursive constructions

Next we give a recursive construction for caps which satisfy (EL).

Definition 8. Let A ⊂ IF n
q = AG(n, q) and Al := (A,A, . . . , A) ⊂ AG(nl, q).

For s = (s1, . . . , sl) ∈ {0, . . . , c}l and Ai ⊂ AG(n, q) define

s(A0, . . . , Ac) := (As1 , . . . , Asl) ⊂ AG(ln, q).

For S ⊂ {0, . . . , c}l define

S(A0, . . . , Ac) :=
⋃
s∈S

s(A0, . . . , Ac)

Definition 9. We say S ⊂ {0, . . . , c}l is a capset if the following are satis-
fied:
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(1) for every pair s 6= s′ ∈ S there is a coordinate i where si = 0 6= s′i and
a coordinate j where sj 6= 0 = s′j.

(2) for every triple of distinct s, s′, s′′ ∈ S there is a coordinate i such that
{si, s′i, s′′i } is either {0, u, v} or {0, 0, u}, with u 6= v ∈ {1, . . . , c}.

Let S be a capset. We say S is an admissible set if in addition |S| ≥ 2,
l ≥ 2 and for every pair s 6= s′ ∈ S at least one of the two following properties
is satisfied

(3) there is a coordinate i where {si, s′i} = {0, u} and a coordinate j where
{sj, s′j} = {0, v}, with u 6= v ∈ {1, . . . , c}, or

(4) there is a coordinate i where si = s′i = 0.

The motivation for Definition 9 is the following lemma:

Lemma 10. Let (A0, {Ai}ci=1) satisfy property (EL). If S ⊂ {0, . . . , c}l is a
capset then S(A0, . . . , Ac) is a cap in AG(ln, q).

If S is an admissible set, then (S(A0, . . . , Ac), {Ali}ci=1) satisfies property
(EL).

If νi is the frequency of the entry i in s then s(A0, . . . , Ac) contains∏
i |Ai|νi points. In our examples we will have the situation that all |Ai| = N

for i > 0 and all s ∈ S have equal weight w. In this case the number of
points in S(A0, . . . , Ac) is |S|Nw|A0|l−w.

Proof. Assume S is a capset. Theorem 1 shows that s(A0, . . . , Ac) is a cap
for all s. Let s, s′ ∈ S, s 6= s′. We want to show that the union s(A0, . . . , Ac)∪
s′(A0, . . . , Ac) of two blocks is a cap. Assume without restriction that two
points from s(A0, . . . , Ac) are collinear with a point from s′(A0, . . . , Ac). By
Property (1) there is a coordinate section where each of the points from
s(A0, . . . , Ac) projects to an element from A0 and the third point projects to
an element from Ai for some i 6= 0. This means there exist nonzero coefficients
λ1, λ2, λ3,

∑3
i=1 λi = 0, and elements a0, a

′
0 ∈ A0, ai ∈ Ai such that λ1a0 +

λ2a
′
0 + λ3ai = 0. If 〈a0〉 = 〈a′0〉 then (EL(1)) yields a contradiction, (EL(2))

yields a contradiction if 〈a0〉 6= 〈a′0〉.
Likewise, Property (2) shows that the union of three blocks is a cap, in

the first alternative by using (EL(1)) or (EL(3)), making use of (EL(1)) or
(EL(2)) in the second alternative.
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Assume now S is an admissible set. We show that condition (EL) is
satisfied.

(EL(1)) follows from (1), as for every s ∈ S there is a coordinate i such
that si = 0, by using (EL(1)) of (A0, {Ai}ci=1).

(EL(2)) : Assume 〈a〉, a ∈ Ali, i 6= 0 is collinear with 〈x〉, x ∈ s(A0, . . . , Ac)
and 〈y〉, y ∈ s′(A0, . . . , Ac). If s = s′, a coordinate where si = 0 yields a
contradiction because of (EL(1)) or (EL(2)). If s 6= s′, we use admissibility.
In case of (3) use (EL(1)) or (EL(3)), in case of (4) use (EL(1)) or (EL(2))
to obtain a contradiction.

(EL(3)) : Properties (EL(1)) and (EL(3)) of (A0, {Ai}ci=1) show that
points 〈a〉, 〈a′〉, 〈x〉 cannot be collinear when a ∈ Ali, a

′ ∈ Alj for i 6= j;
i, j 6= 0 and x ∈ s(A0, . . . , Ac), s ∈ S as there is a coordinate i where si = 0.

Lemma 10 can be generalized in an obvious way, using different caps
(A

(j)
0 , {A(j)

i }ci=1) ⊂ AG(nj, q) for each coordinate section j, 1 ≤ j ≤ l. We
will not make use of this generalization here.

The following lemma is obvious:

Lemma 11. Let S be a capset, let (A0, {Ai}ci=1) satisfy property (EL) and
∆ = Ai ∩ Aj, i 6= j. Then S(A0, . . . , Ac) ∪∆l is a cap in AG(ln, q).

Now it is high time to give some examples of capsets and admissible sets.

Definition 12. Denote by Ic(l, t) an admissible set in {0, . . . , c}l consisting
of
(
l
t

)
vectors of weight l − t and by Ĩc(l, t) a capset of this type.

Lemma 13. There exists an Ic(l, c− 1) for all l > c.

Proof. Define this set of vectors as the
(

l
c−1

)
vectors of weight l− c+ 1 with

entries i + 1 between the i-th and i + 1-th zero (if any) and with entries 1
before the first zero, entry c after the last zero, if any.

As all vectors have different support, condition (1) of Definition 9 is au-
tomatically fulfilled. Now consider condition (2). Consider three different
vectors s, s′, s′′ of Ic(l, c − 1). We can assume that there is no coordinate i
with {si, s′i, s′′i } = {0, 0, u}. As the vectors have different support there is a
first coordinate i where exactly one of the si, s

′
i, s
′′
i is zero. We may assume

that si = 0. Let j be the first coordinate where sj 6= 0 and s′j or s′′j is zero.
We may assume that s′j = 0. So there are more zeroes in s up to coordinate
j than in s′′. It follows sj > s′′j > 0, hence condition (2) is satisfied.
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Let s, s′ be two different vectors from our set. Assume that condition (4)
is not satisfied. In particular there is no coordinate i with si = s′i = 0. Let
s be the vector with the smallest coordinate where a zero appears, let this
coordinate be i. Let j be the first coordinate where a zero appears in s′. We
have s′i = 1 and sj > 1, so condition (3) is satisfied.

The first series of Calderbank and Fishburn [1] is obtained applying
Lemma 11 with A0, A1, A2 from the doubled Hill cap as introduced in Sec-
tion 3, and S = I2(l, 1).

The following vectors s = (s1, . . . , s10) and their cyclic shifts form an
Ĩ2(10, 5). Observe that the orbit of the last vector has only length 2.

(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) (0, 0, 0, 0, 1, 0, 1, 1, 1, 2)
(0, 0, 0, 0, 1, 2, 0, 1, 1, 2) (0, 0, 0, 0, 1, 2, 2, 0, 1, 2)
(0, 0, 0, 0, 1, 2, 2, 2, 0, 2) (0, 0, 0, 1, 0, 0, 1, 1, 1, 2)
(0, 0, 0, 1, 0, 2, 0, 1, 1, 2) (0, 0, 0, 2, 0, 1, 1, 0, 2, 1)
(0, 0, 0, 1, 0, 2, 2, 2, 0, 1) (0, 0, 0, 2, 1, 0, 0, 1, 1, 2)
(0, 0, 0, 2, 1, 0, 2, 0, 1, 2) (0, 0, 0, 1, 2, 0, 1, 1, 0, 2)
(0, 0, 0, 2, 1, 1, 0, 0, 2, 2) (0, 0, 0, 1, 2, 2, 0, 2, 0, 2)
(0, 0, 0, 1, 2, 2, 1, 0, 0, 2) (0, 0, 2, 0, 0, 2, 0, 1, 1, 1)
(0, 0, 1, 0, 0, 2, 1, 0, 1, 2) (0, 0, 1, 0, 0, 2, 1, 2, 0, 1)
(0, 0, 2, 0, 2, 0, 0, 2, 1, 2) (0, 0, 2, 0, 1, 0, 1, 0, 1, 2)
(0, 0, 1, 0, 2, 0, 1, 1, 0, 2) (0, 0, 2, 0, 2, 2, 0, 0, 1, 2)
(0, 0, 2, 0, 2, 1, 0, 2, 0, 1) (0, 0, 2, 1, 0, 0, 2, 2, 0, 2)
(0, 0, 1, 1, 0, 2, 0, 2, 0, 1) (0, 2, 0, 2, 0, 2, 0, 2, 0, 2)

Also, I2(9, 2), I2(10, 3) , I2(9, 4), I2(9, 5), I2(10, 6) and Ĩ2(11, 2) were found
by computer and are available on the author’s homepage [15].

5 Asymptotic results

It follows from Theorem 1 that µ(q) ≥ logq(|A|)/n for every cap A in
AG(n, q). In the ternary case the lower bound from Calderbank and Fishburn
[1] is µ(3) ≥ 0.7218 . . . . It is based on a cap in AG(13500, 3) (the doubled
Hill cap yields µ(3) ≥ 0.7158 . . .)

Our first asymptotic improvement happens in AG(62, 3). Apply Lemma10
with n = 6, c = 2, where A0, A1, A2 are derived from the doubled Hill cap in
AG(6, 3) as in Section 3 (recall |A1| = |A2| = 112, |A0| = 12). As admissible

9



set choose I2(l, 1) (see Lemma 13). The result is a cap in AG(6l, 3). Apply
Theorem 5 with n = 6l, m = 1, where the Bi are from the projective case
as in Section 3 (|B1| = |B2| = 1, |B0| = 2). The result is a cap in PG(6l +
1, 3). The final result is obtained by applying the doubling construction.
The asymptotic expression has its maximum at l = 10. We have a cap in
AG(62, 3). The number of its points is 2 ∗ (2 ∗ 11210 + 2 ∗ 10 ∗ 1129 ∗ 12),
yielding µ(3) ≥ 0.723779 . . ..

The use of different values of m as in Section 3 produces further examples
of good caps but no asymptotic improvement.

Let us apply Lemma 10 recursively. Start from the admissible set S ⊂
{0, 1, . . . , c}l. For simplicity assume |Ai| = N for all i 6= 0, |A0| = M and that
all elements of S have the same weight l− s0. It follows from Lemma 10 that
the family of caps (S(A0, . . . , Ac), {Ali}ci=1) in AG(ln, q) satisfies property
(EL). Apply Lemma 10 again, with a capset T ⊂ {0, 1, . . . , c}k, all of whose
elements have weight k − t0. The result is a cap in AG(kln, q), which we
denote for simplicity as T (S(A)), where A = (A0, {Ai}ci=1). We have

|T (S(A))| = |T | · |S|t0N lk−t0s0M s0t0 .

In our favorite ternary case (n = 6, c = 2, N = 112, M = 12) we use
S = I2(8, 1) and T the Ĩ2(10, 5) constructed in Section 4. Finally we can
apply Lemma 11 with ∆ = Al1∩Al2, |∆k| = 32kl = 3280. We have constructed
a cap in AG(480, 3) with

3280 + 85

(
10

5

)
11275 ∗ 125

points. This yields µ(3) ≥ 0.724851 . . ..
Finally we discuss which asymptotic results are obtainable from Lemma 10

provided all needed Ĩc(l, t) existed. With the above notation we have |Ĩc(l, t)(A0, . . . , Ac)| =(
l
t

)
N l−tM t. Using the well known asymptotic relation 2lh(t/l) ∼

(
l
t

)
between

the binary entropy function h(x) := −x log2(x)− (1− x) log2(1− x) and the
binomial coefficients (see e.g. [11]), we see that we would asymptotically get

µ(q) ≥ 1

n
(h(t/l) logq(2) + ((l − t)/l) logq(N) + t/l logq(M)).

The usual analytic procedure shows that at l = tN+M
M

we obtain the maxi-
mum and so would have:

µ(q) ≥
logq(N +M)

n
.
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For our ternary example it would therefore be possible to reach µ(3) ≥
log3(124)

6
= 0.731268 . . . if all Ĩc((101

3
)t, t) would exist.

This leaves us with the interesting research problem to construct Ĩ2(l, t),
or at least large subsets of Ĩ2(l, t), in range of l = (101

3
)t for large t.
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