Lengthening and the Gilbert-Varshamov bound

Yves Edel and Jürgen Bierbrauer

Abstract

We use lengthening and an enhanced version of the Gilbert-Varshamov lower bound for linear codes to construct a large number of record-breaking codes. Our main theorem may be seen as a closure operation on data bases.

Index Terms

Linear codes, lengthening, Gilbert Varshamov-bound.

1 Introduction

¹ Let q be a prime-power, which will be fixed throughout the discussion. Denote by \mathbb{F}_q the field of q elements and by V(n, i) the number of vectors of weight at most i in \mathbb{F}_q^n . It is clear that

$$V(n,i) = \sum_{j=0}^{i} \binom{n}{j} (q-1)^{j}.$$
 (1)

Let \mathcal{C} be a q-ary code with parameters [n, k-1, d]. As \mathcal{C} has q^{k-1} elements it follows that if $q^{k-1}V(n, d-1) < q^n$, then there is a vector $v \in \mathbb{F}_q^n$, which has distance $\geq d$ from every code-word $\in \mathcal{C}$. This leads to the Gilbert-Varshamov bound:

¹authors'addresses: Yves Edel, Mathematisches Institut der Universität, Im Neuenheimer Feld 288, 69120 Heidelberg (Germany); Jürgen Bierbrauer, Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan 49931 (USA)

Theorem 1 (Gilbert-Varshamov bound) If $V(n, d-1) < q^{n-k+1}$, then a q-ary linear code with parameters [n, k, d] exists.

Using orthogonal arrays the following can be proved.

Theorem 2 If $V(n-1, d-2) < q^{n-k}$, then a q-ary linear code with parameters [n, k, d] exists. Moreover every code [n-1, k-1, d] can be embedded in a code [n, k, d].

This is to be found in the book by Mac Williams and Sloane ([3], page 34). For the sake of completeness we shall give a proof in the final section. It is easy to see that this is always stronger than the Gilbert-Varshamov bound. Combining Theorem 2 with the method of lengthening yields new codes:

Theorem 3 Assume $V(n-1, d-2) < q^{n-k}$. If there exist codes $[n-i, k-i, d+\delta]$ and $[e, i, \delta]$, then a code $[n+e, k, d+\delta]$ can be constructed.

A proof of Theorem 3 will be given in the following section. It should be noted that Theorem 3 uses only the code parameters. No information on subcodes is needed. We like to think of it as of a closure operation on data bases. In order to illustrate its use we give a binary example: a code \mathcal{D} with parameters [126, 36, 34] is known to exist. It can be derived from a [128, 36, 36] constructed in [4]. As $V(126, 26) < 2^{90}$ it follows from Theorem 2 that \mathcal{D} can be embedded in a code \mathcal{C} with parameters [127, 37, 28]. Applying construction X to the pair $\mathcal{C} \supset \mathcal{D}$ with [6, 1, 6] as auxiliary code yields the new code [133, 37, 34].

In Table 1 we list some more applications of Theorem 3. In all cases i = 1, so that the auxiliary code is the repetition code $[e, i, \delta] = [\delta, 1, \delta]$. The following parameters are given:

- $q \in \{2, 3, 4\},$
- the parameters $[n-1, k-1, d+\delta]$ of the known code \mathcal{D} ,
- δ,
- the parameters $[n, k, d + \delta]$ of the resulting code \mathcal{E} .

It is easy to write a program which operates on any given data base and produces the closure of the data base under Theorem 3. All in all Theorem 3 leads to hundreds of improvements in the present version of the data base.

Table 1:

q	\mathcal{D}	δ	E
2	[123,29,39]	8	[132,30,39]
2	[126, 29, 42]	10	[137, 30, 42]
2	[135, 29, 45]	10	[146, 30, 45]
2	[197, 65, 41]	3	[201, 66, 41]
2	[206, 96, 31]	3	[210, 97, 31]
3	[40, 24, 9]	2	[43, 25, 9]
3	[43, 24, 10]	2	[46, 25, 10]
3	[52, 13, 22]	3	[56, 14, 22]
3	[59, 32, 13]	2	[62, 33, 13]
3	[64, 17, 24]	2	[67, 18, 24]
3	[65, 16, 25]	2	[68, 17, 25]
3	[81, 16, 41]	10	[92, 17, 41]
3	[83, 16, 42]	10	[94, 17, 42]
4	[44, 22, 14]	3	[48, 23, 14]
4	[40, 14, 15]	1	[42, 15, 15]
4	[42, 14, 17]	2	[45, 15, 17]
4	[59, 27, 17]	2	[62, 28, 17]
4	[63, 27, 21]	4	[68,28,21]
4	[65, 27, 23]	5	[71,28,23]

2 Proofs

Let \mathcal{A} be a linear subspace of dimension n-k of \mathbb{F}_q^{n-1} , which is an orthogonal array of strength t, and let A be a generator matrix of \mathcal{A} . We wish to add an additional column to A such that the resulting subspace of \mathbb{F}_q^n still is an orthogonal array of strength t. The columns which do not do the job are precisely those vectors in \mathbb{F}_q^{n-k} , which can be written as linear combinations of at most t-1 columns of A. The number of such linear combinations is at most $\sum_{i=0}^{t-1} {\binom{n-1}{i}} (q-1)^i$. This number happens to equal V(n-1,t-1). Thus, if $V(n-1, t-1) < q^{n-k}$, then our orthogonal array can be extended in the required manner. By Delsarte theory a linear subspace of $I\!\!F_q^n$ is an orthogonal array of strength t if and only if its dual has minimum distance > t+1. Considering duals we see that we have proved the following: if there is a code \mathcal{C} with parameters [n-1, k-1, d] and if $V(n-1, d-2) < q^{n-k}$, then \mathcal{C} can be extended to a code [n, k, d]. Just as in the case of the Gilbert-Varshamov bound it is easy to see by induction that the condition of the existence of an [n-1, k-1, d] is not needed. Theorem 2 is proved. In order to show that Theorem 2 is always better than Theorem 1 it suffices to show the inequality

$$qV(n-1, d-2) < V(n, d-1).$$
(2)

In fact, consider the V(n-1, d-2) vectors of length n-1 and weight $\leq d-2$. Adding a coordinate and extending each of these vectors in all q possible ways yields qV(n-1, d-2) different (but obviously not all) vectors of length n and weight $\leq d-1$. This proves our last claim concerning Theorem 2.

Consider Theorem 3: we use a basic fact on lengthening known as construction X([3], see also [1]):

Lemma 1 (construction X) Let C be a q-ary code with parameters [n, k, d]and D a subcode of C of codimension κ and minimum distance $\geq d + \delta$ for some $\delta > 0$. If there is a code with parameters $[e, \kappa, \delta]$ then there is a code $[n + e, k, d + \delta]$ which projects onto C.

The assumptions of Theorem 3 show that the code $[n-i, k-i, d+\delta]$ can be embedded in a code [n, k, d]. Application of construction X to this pair of codes leads to the conclusion of Theorem 3.

References

- [1] J.Bierbrauer and Y.Edel, *Extending and lengthening BCH-codes*, manuscript.
- [2] A.E. Brouwer, Data base of bounds for the minimum distance for binary, ternary and quaternary codes, URL http://www.win.tue.nl/win/math/dw/voorlincod.html or URL http://www.cwi.nl/htbin/aeb/lincodbd/2/136/114 or URL ftp://ftp.win.tue.nl/pub/math/codes/table[234].gz.
- [3] F.J.McWilliams and N.J.Sloane, *The Theory of Error-Correcting Codes*, North-Holland, Amsterdam 1977.
- [4] D.Schomaker and M.Wirtz, On binary cyclic codes of length from 101 to 127, IEEE Transactions on Information Theory 38(1992), 516-518.