HAwvING PSL(2,q)
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We show that PSLs(q), ¢ # 3(mod 4), contains a subset of half the cardinality of PSLs(q)
which is uniformly 2-homogeneous on the projective line.

1 INTRODUCTION

The group PSLs(q) is 2-transitive, in particular 2-homogeneous on the g + 1 points of the
projective line Pi(q). A set S of permutations will be called g—uniformly 2-homogeneous
if for any unordered pairs A, B of the letters, exactly p permutations in & map A onto
B. If the number p # 0 is not specified, we speak of a uniformly 2-homogeneous set of
permutations. We are interested in the question, when there is a subset S C PSLy(q) of
cardinality |S| = |PSLy(q)|/2, which is uniformly 2-homogeneous on the projective line. If
q is odd, then u = (¢ — 1)/2, if q is even, then = ¢ — 1.

Theorem 1 PSLs(q) contains a subset S of cardinality
|S| = |PSLs(q)|/2, which is uniformly 2-homogeneous on the projective line, if and only if
q # 3(mod 4).

If ¢ = 3(mod 4), then p = (¢ — 1)/2 would be an odd number. This contradicts [2],Lemma
2. In case ¢ = 1(mod 4) we construct a (¢ — 1)/2—uniformly 2-homogeneous subset S C
PSLy(q). More precisely we prove the following:

Theorem 2 Let G = PSLy(q), ¢ = 1(mod 4), i € IF, such that i* = -1, U = {7 —
T+ | v e F,}, F a cyclic subgroup of order (¢ + 1)/2 such that co and 0 are in different
orbits under F. Then the following hold:



o Letty = (1 — a°7), and w = (1 — —3=). Let R C IF; such that
a€R—= —a¢R

Then t,, o € R and w,, o € R together form a set of representatives of the double
cosets for F and U.

e Choose a subset X of these representatives such that
ta € X <= tin ¢ X,

Wo € X <= wj, ¢ X.

Set § = Ugex FaU. Then S is (¢ — 1)/2—uniformly 2-homogeneous on the projective
line.

It was shown in [I] that PSLy(2/), f odd, may be halved in the sense of Theorem 1: If ¢
is the Frobenius automorphism of I, and oy is an involution in PSLy(2/), which commutes
with ¢, then the set of commutators

S = {[ove, 9] | g € PSLa(27)}

is (2/ — 1)-uniformly 2-homogeneous (f odd).

We show here that PSLy(2/) may be halved in the sense of Theorem 1. Our proof works
for all f.

Theorem 3 Let G = PSLy(q), ¢ = 2/, F =< p > a cyclic subgroup of order q + 1, where
the generator p is chosen such that p: 0 — oo — 1, T = {my | A € I/} = Z, 1, where
my = (1 — A - 7). Then the following hold:

o The elements u, = (T — T+ ) are representatives of the double cosets for T and F,
i.€.
G - U—yquTUfyF
e Choose a subset X of these representatives such that

Uy € X <= uyy1 ¢ X,

Set S = UgexTxF. Then S is (q — 1)-uniformly 2-homogeneous on the projective line.

Observe that the proof of [I],Lemma 2.1 is valid for all ¢ = 27. This shows that PSLy(27)
does not contain a uniformly 2-homogeneous subset with less than |PSLy(27)|/2 elements.



2 PROOF OF THE THEOREMS

2.1 PROOF OF THEOREM 2

We use the notation introduced in the statement of the Theorem. Operation on the projective
line will be written from the right. The generic element of the unipotent group U is (7 —
T+7). Because of the double transitivity of G the group F' may be chosen as in the statement
of Theorem 2. Recall that the non-split torus F' (in other words the cyclic subgroup F' of
order (¢ 4+ 1)/2) acts semi-regularly. Observe ¢! = ty/, wy' = w,. Assume tg € Ft U,
equivalently t,U tgl NF #(, or
Loy
T —> @(a T+7y) €F
for some v € IF;. As oo is fixed and F' acts semi-regularly, we conclude that v = 0, 8 = +a.
Assume wg € Fw,U; equivalently w,Uws N F # (), or
a’r
T ———— € F
T B+ o)
for some v € IF;,. As 0 is fixed and F' acts semi-regularly, we conclude v =0, 8 = +a. Let
A, = Ft U, B, = Fw,U. We have seen that the A, and B, each form (¢ — 1)/2 different
double cosets. Assume wg € Ft,U, equivalently t,Uwg N F # (), or

1
I
for some y € IFj,. As this element maps oo onto 0, we get a contradiction. The first statement
of Theorem 2 is proved. Let unordered pairs A and B of elements of the projective line be
given, let T be the set of ¢—1 elements of G mapping A onto B. We shall show that for every
a € IF, there is a bijection between T'N A, and T' N A;, and likewise a bijection between
T NB, and T N B;,. We have to distinguish several cases:

1. A= {o0,b}, B ={o0,d}. There is exactly one element in A, (and exactly one in A;,)
mapping co — 00, b — d, and likewise there is exactly one element in each of the double
cosets of type A mapping b — oo — d. Consider the double cosets of type B. No element
in a double coset of type B can fix oo, as otherwise we would have an element of F' mapping
oo — 0. Which elements of a double coset of type B afford the operation b — oo — d?
The typical element of B, is gw,u(7y), where g € F. This element will afford the operation
if and only if g maps b to 0, and v =d — ﬁ This is feasible if and only if b and 0 are in
the same F-orbit. If this is the case, every double coset of type B will contain exactly one
such element.

2. A= {o0,b}, B={c,d}. Thereis an element gt ,u(y) € A, mapping co — ¢, b — d
if and only if there is an element gt;,,u(y') € A;, mapping co — d, b — ¢. Here 7 and
~" are uniquely determined. The situation is the same for double cosets of type B. There



is an element gw,u(y) € B, mapping co — ¢, b — d if and only if there is an element
gwiau(vy') € B, mapping oo — d, b — c¢. Here 7y and 4/ are uniquely determined.

3. A={a,b}, B={o0,d}. Asin the second case, there is an element gt,u(vy) € A, mapping
a — 00, b — d if and only if there is gt;,u(v') € A;, affording the operation a — d,
b — oo, likewise for the double cosets of type B.

4. A = {a,b}, B = {c¢,d}. The typical element gt,u(y) € A, will afford the operation
a — ¢, b — d if and only if o? = a;:ig, v = ¢ — a?a?. This is the case if and only if a
corresponding element gt;,u(y') € A, affords a — d, b — ¢, where v/ = ¢ + a?b?. An
analogous computation leads to the same conclusion for double cosets of type B.

2.2 PROOF OF THEOREM 3

The generator p of F'is chosen such that u; = (1 — 7+ 1) inverts F.. Write the elements of
the projective line as a;, with subscripts written mod ¢+ 1, such that ay = oo and af = a;,1.
The operation of u; shows a_; = a; + 1.

Let a pair {a,b} of elements of the projective line be given, and let g = myu,p” be the
generic element of T'w., F', where u, € X. Then

ald=(\-a+7)"

B =(A-b+7)".

Set A-a+7v=a;, A\-b+7v=a;. We define a mapping ® =@,,: S — G — S by
D(g) = matty 19"

Clearly ®(g) € G — S and @ is a bijective mapping. Compare the action of g to the action

of ®(g) on {a,b}. By the choice of i, j we have

v v

Y _ P
o/ =a; =a,, U =d; =a,yy.

We calculate:
pu+i+j pl’+i+j
) =a

a®9 = (q; + 1 Py = Ay,

and similarly 6?9 = a,.;. This shows that the images of the pair {a,b} under g and ®(g)
are the same.
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