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We show that PSL2(q), q 6≡ 3(mod 4), contains a subset of half the cardinality of PSL2(q)
which is uniformly 2-homogeneous on the projective line.

1 Introduction

The group PSL2(q) is 2-transitive, in particular 2-homogeneous on the q + 1 points of the
projective line P1(q). A set S of permutations will be called µ−uniformly 2-homogeneous
if for any unordered pairs A, B of the letters, exactly µ permutations in S map A onto
B. If the number µ 6= 0 is not specified, we speak of a uniformly 2-homogeneous set of
permutations. We are interested in the question, when there is a subset S ⊂ PSL2(q) of
cardinality |S| = |PSL2(q)|/2, which is uniformly 2-homogeneous on the projective line. If
q is odd, then µ = (q − 1)/2, if q is even, then µ = q − 1.

Theorem 1 PSL2(q) contains a subset S of cardinality
|S| = |PSL2(q)|/2, which is uniformly 2-homogeneous on the projective line, if and only if
q 6≡ 3(mod 4).

If q ≡ 3(mod 4), then µ = (q − 1)/2 would be an odd number. This contradicts [2],Lemma
2. In case q ≡ 1(mod 4) we construct a (q − 1)/2−uniformly 2-homogeneous subset S ⊂
PSL2(q). More precisely we prove the following:

Theorem 2 Let G = PSL2(q), q ≡ 1(mod 4), i ∈ IFq such that i2 = −1, U = {τ −→
τ + γ | γ ∈ IFq}, F a cyclic subgroup of order (q + 1)/2 such that ∞ and 0 are in different
orbits under F . Then the following hold:



• Let tα = (τ −→ α2τ), and wα = (τ −→ 1
α2τ

). Let R ⊂ IF ∗
q such that

α ∈ R ⇐⇒ −α /∈ R

Then tα, α ∈ R and wα, α ∈ R together form a set of representatives of the double
cosets for F and U .

• Choose a subset X of these representatives such that

tα ∈ X ⇐⇒ tiα /∈ X,

wα ∈ X ⇐⇒ wiα /∈ X.

Set S = ∪x∈XFxU. Then S is (q − 1)/2−uniformly 2-homogeneous on the projective
line.

It was shown in [1] that PSL2(2
f ), f odd, may be halved in the sense of Theorem 1: If φ

is the Frobenius automorphism of IFq and σ0 is an involution in PSL2(2
f ), which commutes

with φ, then the set of commutators

S = {[σ0φ, g] | g ∈ PSL2(2
f )}

is (2f − 1)-uniformly 2-homogeneous (f odd).

We show here that PSL2(2
f ) may be halved in the sense of Theorem 1. Our proof works

for all f .

Theorem 3 Let G = PSL2(q), q = 2f , F =< ρ > a cyclic subgroup of order q + 1, where
the generator ρ is chosen such that ρ : 0 −→ ∞ −→ 1, T = {mλ | λ ∈ IF ∗

q } ∼= Zq−1, where
mλ = (τ −→ λ · τ). Then the following hold:

• The elements uγ = (τ −→ τ + γ) are representatives of the double cosets for T and F ,
i.e.

G = ∪γ∈IFqTuγF

• Choose a subset X of these representatives such that

uγ ∈ X ⇐⇒ uγ+1 /∈ X.

Set S = ∪x∈XTxF. Then S is (q − 1)-uniformly 2-homogeneous on the projective line.

Observe that the proof of [1],Lemma 2.1 is valid for all q = 2f . This shows that PSL2(2
f )

does not contain a uniformly 2-homogeneous subset with less than |PSL2(2
f )|/2 elements.



2 Proof of the Theorems

2.1 Proof of Theorem 2

We use the notation introduced in the statement of the Theorem. Operation on the projective
line will be written from the right. The generic element of the unipotent group U is (τ −→
τ +γ). Because of the double transitivity of G the group F may be chosen as in the statement
of Theorem 2. Recall that the non-split torus F (in other words the cyclic subgroup F of
order (q + 1)/2) acts semi-regularly. Observe t−1

α = t1/α, w−1
α = wα. Assume tβ ∈ FtαU ,

equivalently tαUt−1
β ∩ F 6= ∅, or

τ −→ 1

β2
(α2τ + γ) ∈ F

for some γ ∈ IFq. As ∞ is fixed and F acts semi-regularly, we conclude that γ = 0, β = ±α.
Assume wβ ∈ FwαU ; equivalently wαUwβ ∩ F 6= ∅, or

τ −→ α2τ

β2(1 + α2γτ)
∈ F

for some γ ∈ IFq. As 0 is fixed and F acts semi-regularly, we conclude γ = 0, β = ±α. Let
Aα = FtαU , Bα = FwαU . We have seen that the Aα and Bα each form (q − 1)/2 different
double cosets. Assume wβ ∈ FtαU , equivalently tαUwβ ∩ F 6= ∅, or

τ −→ 1

β2(α2τ + γ)
∈ F

for some γ ∈ IFq. As this element maps ∞ onto 0, we get a contradiction. The first statement
of Theorem 2 is proved. Let unordered pairs A and B of elements of the projective line be
given, let T be the set of q−1 elements of G mapping A onto B. We shall show that for every
α ∈ IFq there is a bijection between T ∩ Aα and T ∩ Aiα and likewise a bijection between
T ∩ Bα and T ∩ Biα. We have to distinguish several cases:

1. A = {∞, b}, B = {∞, d}. There is exactly one element in Aα (and exactly one in Aiα)
mapping ∞ −→∞, b −→ d, and likewise there is exactly one element in each of the double
cosets of type A mapping b −→∞ −→ d. Consider the double cosets of type B. No element
in a double coset of type B can fix ∞, as otherwise we would have an element of F mapping
∞ −→ 0. Which elements of a double coset of type B afford the operation b −→ ∞ −→ d?
The typical element of Bα is gwαu(γ), where g ∈ F . This element will afford the operation
if and only if g maps b to 0, and γ = d− 1

α2∞g . This is feasible if and only if b and 0 are in
the same F -orbit. If this is the case, every double coset of type B will contain exactly one
such element.

2. A = {∞, b}, B = {c, d}. There is an element gtαu(γ) ∈ Aα mapping ∞ −→ c, b −→ d
if and only if there is an element gtiαu(γ′) ∈ Aiα mapping ∞ −→ d, b −→ c. Here γ and
γ′ are uniquely determined. The situation is the same for double cosets of type B. There



is an element gwαu(γ) ∈ Bα mapping ∞ −→ c, b −→ d if and only if there is an element
gwiαu(γ′) ∈ Biα mapping ∞ −→ d, b −→ c. Here γ and γ′ are uniquely determined.

3. A = {a, b}, B = {∞, d}. As in the second case, there is an element gtαu(γ) ∈ Aα mapping
a −→ ∞, b −→ d if and only if there is gtiαu(γ′) ∈ Aiα affording the operation a −→ d,
b −→∞, likewise for the double cosets of type B.

4. A = {a, b}, B = {c, d}. The typical element gtαu(γ) ∈ Aα will afford the operation
a −→ c, b −→ d if and only if α2 = c−d

ag−bg , γ = c − α2ag. This is the case if and only if a
corresponding element gtiαu(γ′) ∈ Aiα affords a −→ d, b −→ c, where γ′ = c + α2bg. An
analogous computation leads to the same conclusion for double cosets of type B.

2.2 Proof of Theorem 3

The generator ρ of F is chosen such that u1 = (τ −→ τ +1) inverts F . Write the elements of
the projective line as ai, with subscripts written mod q +1, such that a0 = ∞ and aρ

i = ai+1.
The operation of u1 shows a−i = ai + 1.

Let a pair {a, b} of elements of the projective line be given, and let g = mλuγρ
ν be the

generic element of TuγF , where uγ ∈ X. Then

ag = (λ · a + γ)ρν

bg = (λ · b + γ)ρν

.

Set λ · a + γ = ai, λ · b + γ = aj. We define a mapping Φ = Φa,b : S −→ G− S by

Φ(g) = mλuγ+1ρ
ν+i+j.

Clearly Φ(g) ∈ G− S and Φ is a bijective mapping. Compare the action of g to the action
of Φ(g) on {a, b}. By the choice of i, j we have

ag = aρν

i = aν+i, bg = aρν

j = aν+j.

We calculate:
aφ(g) = (ai + 1)ρν+i+j

= aρν+i+j

−i = aν+j,

and similarly bφ(g) = aν+i. This shows that the images of the pair {a, b} under g and Φ(g)
are the same.

References

[1] J.Bierbrauer and Tran van Trung: Halving PGL(2, 2f ), f odd: a series of cryp-
tocodes, Designs, Codes and Cryptography 1(1991),141-148.



[2] J.Bierbrauer and Tran van Trung: Some highly symmetric authentication per-
pendicular arrays, Designs, Codes and Cryptography 1(1992),307-319.

Jürgen Bierbrauer,
Department of Mathematics,
Michigan Technological University,
Houghton, MI 49931,USA.
Yves Edel,
Mathematisches Institut der Universität,
Im Neuenheimer Feld 288,
69120 Heidelberg,Germany.

Eingegangen am 16. Februar 1993


	Introduction
	Proof of the Theorems
	Proof of Theorem 2
	Proof of Theorem 3


