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Abstract

We introduce a computer-based method for extending linear codes, which
can be viewed as an inverse of the familiar construction Y1. As a result codes
with record-breaking parameters are constructed.

1 Introduction

Let C be a q-ary linear code with parameters [n, k, d]. Let v be a code-word
of the dual code C⊥, of weight w. Then the subcode of C, which consists
of the words having vanishing entry at the support of v has parameters
[n − w, k − w + 1, d]. This observation is known as construction Y1. We
ask when this operation can be inverted. So let a code C with parameters
[n, k, d] be given, let H be a check matrix of C. Let H ′ be obtained by adding
a row with entries 0 to H. We want to try and lengthen H ′ by adding l
columns (elements of IF n+1−k

q ) to H ′ such that the resulting matrix still has
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the property that any d−1 columns are linearly independent. The lengthened
matrix is then the parity check matrix of a code [n+ l, k + l − 1, d].
Naturally we wish to find as many new columns as possible. e = 1 can always
be obtained. This leads to a code [n+1, k, d], which can trivially be obtained
from C. In our setting it suffices to choose as new column just any vector with
nonzero entry in the last row.
This procedure seems to be called for when C does not admit an extension to a
code [n+1, k+1, d]. It is an easily checked folklore fact among coding theorists
that this is equivalent with the covering radius of C satisfying ρ(C) < d− 1.
In that case our construction can be seen as a tentative to construct a code
[n+ 1, k, d] of covering radius ≥ d− 1, in fact with many vectors at distance
≥ d − 1 from the code. In that case the columns added to H ′ will have
nonzero entries in the last row. Application of construction Y1 to the last
row of the check matrix leads back to code C.
In table I we give a list of codes with new parameters obtained by applying
this procedure.

Complete information on these codes, including a check matrix, is to be
found on the first author’s homepage [1]. Observe that it suffices to give
a check matrix for the longest code in each chain. Some words about the
codes we start from. Codes [127, 106, 7]2 and [63, 39, 9]2 are primitive BCH-
codes, [45, 24, 9]2 is obtained from the quadratic-residue code [48, 24, 12]2.
The ternary code [24, 12, 9]3 is a quadratic-residue code and [22, 12, 7]3 is ob-
tained from it by truncation. A code [85, 74, 6]3 was constructed in [3] as a
computer-generated extension of the dual [81, 70, 6]3 of the extended primi-
tive BCH-code [81, 11, 45]3. Code [85, 70, 7]3 is constructed in [2] by applying
construction X to a pair of dual BCH-codes. Codes [65, 57, 5]4 and [81, 70, 6]4
are taken from [2], [20, 13, 6]4 was constructed by computer and [19, 10, 7]4
was obtained as a truncation from a double circulant code [20, 10, 8]4. Most
of the remaining codes of departure were constructed by computer, the ex-
ceptions being [26, 16, 8]5 (obtained by construction XX from a primitive
BCH-code [24, 16, 6]5,) the Reed-Solomon code [6, 2, 5]5 and [17, 10, 7]9, ob-
tained by truncation from a quadratic-residue code [20, 10, 10]9. Start codes
[30, 24, 5]5, [28, 21, 6]5, [27, 18, 7]5, [14, 7, 7]7 and [16, 10, 6]8 are new codes.
Two of the binary codes yield dense sphere packings, via the coset-code
method (see [4]). In dimension 156 we can use [156, 133, 8]2 together with
[156, 57, 32]2, the repetition code and the all-even code, to construct a sphere
packing with center density δ = 2112. In dimension 163 the same method,

2



Table I
[127, 106, 7]2 → [155, 133, 7]2 → [162, 139, 7]2
[45, 24, 9]2 → [49, 27, 9]2
[63, 39, 9]2 → [72, 47, 9]2 → [77, 51, 9]2
[85, 74, 6]3 → [95, 83, 6]3 → [103, 90, 6]3
[22, 12, 7]3 → [27, 16, 7]3 → [34, 22, 7]3 → [42, 29, 7]3 →

[53, 39, 7]3
[85, 70, 7]3 → [92, 76, 7]3 → [108, 91, 7]3
[24, 12, 9]3 → [29, 16, 8]3 → [35, 21, 8]3
[65, 57, 5]4 → [87, 78, 5]4 → [145, 135, 5]4
[20, 13, 6]4 → [27, 19, 6]4 → [36, 27, 6]4
[81, 70, 6]4 → [106, 94, 6]4
[19, 10, 7]4 → [26, 16, 7]4
[6, 2, 5]5 → [12, 7, 5]5
[30, 24, 5]5 → [44, 37, 5]5 → [78, 70, 5]5 → [137, 128, 5]5
[28, 21, 6]5 → [33, 24, 6]5 → [44, 35, 6]5 → [68, 58, 6]5 →

[102, 91, 6]5
[27, 18, 7]5 → [33, 23, 7]5 → [45, 34, 7]5
[26, 16, 8]5 → [33, 22, 8]5
[14, 7, 7]7 → [19, 11, 7]7
[16, 10, 6]8 → [26, 19, 6]8 → [44, 36, 6]8
[15, 8, 7]8 → [21, 13, 7]8
[17, 10, 7]9 → [22, 14, 7]9
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based on [163, 39, 8]2 and [163, 63, 32]2, yields center density 2120.5.
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