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Abstract

Hill, Landjev, Jones, Storme and Barat proved in a previous article
on caps in PG(5,3) and PG(6,3) that every 53-cap in PG(5,3) is
contained in the 56-cap of Hill and that there exist complete 48-caps
in PG(5,3). The first result was used to lower the upper bound on
ma(6,3) on the size of caps in PG(6,3) from 164 to 154. Presently, the
known upper bound on ms (6, 3) is 148. In this article, using computer
searches, we prove that every 49-cap in PG(5,3) is contained in a
56-cap, and that every 48-cap, having a 20-hyperplane with at most
8-solids, is also contained in a 56-cap. Computer searches for caps in
PG(6,3) which use the computer results of PG(5,3) then lower the
upper bound on ms(6,3) to mo(6,3) < 136. So now we know that
112 < my(6,3) < 136.

1 Introduction

An n-cap in the projective space PG(N,¢q) of dimension N over the finite
field of order ¢ is a set of n points, no three of which are collinear. A cap is
called complete when it is not contained in a larger cap of the same projective
space. The largest size of caps in PG(N, ¢q) is denoted by my (N, ¢). The size
of the second largest complete cap is denoted by mj, (N, ). Thus any n-cap
with n > m, (NN, q) can be extended to a cap of size mq(N, q).

Presently, only the following exact values of mo(N,q) are known. In
PG(2,¢), g odd, there are at most (¢ + 1)-caps [5]. In PG(2,¢), q even, there
are at most (¢ + 2)-caps [5]. In PG(3,¢q), ¢ > 2, the maximal size of a cap is
¢+ 1[5, 29]. And in PG(N,2), the maximal size of a cap is 2V [5].
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In some cases, a complete characterization is known. Namely, in PG(2, ¢),
q odd, every (¢+1)-cap is a conic [30, 31]. In PG(2, g), ¢ even, ¢ > 16, distinct
types of (¢ + 2)-caps exist; see [24] for a list of the known infinite classes of
(g + 2)-caps. In PG(3,q), ¢ odd, every (¢> + 1)-cap is an elliptic quadric
[2, 27]. In PG(3,q), ¢ = 2", h odd, h > 3, as well as the elliptic quadric,
at least one other type of (¢* 4+ 1)-cap exists, called the Tits ovoid [35]. In
PG(N,?2), every 2¥-cap is the complement of a hyperplane [32].

Apart from these results which are valid either for arbitrary ¢ or for
arbitrary dimension N, only some other sporadic results are known. Namely,
the maximal size of a cap in PG(4, 3) is 20 [28], the maximal size of a cap in
PG(5,3) is 56 [16], and the maximal size of a cap in PG(4,4) is 41 [9].

Regarding the characterizations, exactly 9 types of 20-caps exist in PG(4, 3)
[18]. The 56-cap in PG(5, 3) is projectively unique [17]. And there are exactly
2 distinct types of 41-caps in PG(4,4) [8].

In the other cases, only upper bounds on the sizes of caps in PG(N, q)
are known. We refer to [24] for a list of the known results. We also wish
to state the following result of Bierbrauer and Edel [3] which improves the
Meshulam upper bound on the size of caps in AG(N, q), ¢ odd [26].

Theorem 1.1 Let Q = ¢",q > 2 and N > 4. Then the size of a cap in
AG(N, Q) is upper bounded by

(Nh+1)QY
(Nh)?

Using the known maximal size 45 for a cap in AG(5,3) [11], the upper
bound of [3, Theorem 2] gives 114 as upper bound for the size of a cap in
AG(6, 3) and, then again using [3, Theorem 2] gives 296 for the size of a cap
in AG(7,3). The existence of a 149-cap in PG(6, 3) would imply the existence
of a 298-cap in AG(7,3). This latter cap can be obtained by constructing a
cone with vertex P in PG(7,3) and with base a 149-cap in a hyperplane of
PG(7,3) skew to P, and then by selecting two points, different from P, on
each line of this cone, such that there is a hyperplane skew to all 298 points.

There exists a 112-cap in PG(6, 3) obtained by constructing a cone over
the 56-cap in PG(5,3), and by taking two points different from the vertex
on every line of the cone. So presently,

112 < my(6,3) < 148.

We will lower the upper bound to 136 by using computer searches and
geometrical arguments.



One of the computer search results we rely on is the determination of the
value mb (5, 3) of the size of the second largest complete caps in PG(5,3). We
will show in Theorem 3.8 that

miy(5,3) = 48.

The following tables show for small values of ¢ and N the known values
of m4(N,q). Table 1 is [24, Table 2.4]. For the exact references for Table 1,
we refer to [24, Table 2.4].

| ¢ |7 89 11 13 16 17 19 23 25 27 29|
|m/(2,¢)|6 6 8 10 12 13 14 14 17 21 22 24|

Table 1: m/(2,¢) in small planes
q| 3 4 5 7

8§ 14 20 32
19 40
48

ol | ol 2

Table 2: mb(N, q)

For the values of Table 2, we refer to [13] for (N,q) = (3,3), [22] for
(NV,q) = (3,4), [1] for (N, q) = (3,5), [12] for (N, q) = (3,7), [34] for (N, q) =
(4,3), and [10] for (N, q) = (4,4).

Apart from these results, it is also known that

(1) mh(2,2%h) =22 — oM + 1 for h > 1 [4, 14, 25],

(2) mh(N,2) =2V "1 4 2N=3 N > 3 [7].

An i-solid or an i-hyperplane with respect to a cap K in PG(N,¢q) is a
3-dimensional space or hyperplane intersecting K in exactly ¢ points. An

(in)complete i-solid or i-hyperplane is an i-solid or i-hyperplane intersecting
K in an (in)complete i-cap.

2 Known results on caps in PG(4, 3) and PG(5, 3)

2.1 The 20-caps in PG(4, 3)

It is known that the maximal size of a cap in PG(4, 3) is equal to 20 [28], and
that there are exactly 9 types of 20-caps in PG(4, 3) [18]. In [18], these caps
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are called the caps I'1,...,I's and A. The caps I'y,...,I's are all contained
in a cone R @~ (3, 3), with vertex a point R and base a 3-dimensional elliptic
quadric @7 (3,3), while the cap A is contained in a non-singular quadric
Q(4,3).

The 20-caps I'; and A are the only two 20-caps having at most 8-solids.
Moreover, every solid intersects I'y or A in 2,5 or 8 points. The spectrum,
i.e. the tuple of the numbers n; of i-hyperplanes, of both these 20-caps is
equal to (ng,ns, ng) = (10,36, 75).

The caps I'y and I'g are the only 20-caps having 9-solids, but no 10-solids.

2.2 Caps in PG(5, 3)

The maximal size of a cap in PG(5, 3) is equal to 56. There exists a projec-
tively unique 56-cap in PG(5,3). This 56-cap is contained in a non-singular
elliptic quadric @~ (5,3) of PG(5,3), and only has 11- and 20-hyperplanes.
The 11-hyperplanes are the tangent cones to Q~(5,3) of the points of the
56-cap. This cap also does not have 9- or 10-solids, but does have 8-solids.

The 56-cap has the additional property of intersecting every line of Q= (5, 3)
in exactly two points, i.e. the 56-cap is a hemisystem of @~ (5, 3) [6, 33]. In
fact, @ (5,3) can be described as the union of two disjoint 56-caps. The
56-cap is stabilized by a group of size 56 - 10 - 9 - 8 acting in three orbits
onto PG(5, 3). The three orbits consist of the 56-cap on @~ (5, 3), the 56-cap
which is its complement on @~ (5, 3), and of PG(5,3) \ @ (5, 3) [17].

Before [20], few results on other large caps in PG(5, 3) were known.

In [20], it was proven that

(1) every 53-, 54, 55-cap in PG(5, 3) is contained in a 56-cap of PG(5, 3),
(2) every 52-cap, having at most 8-solids, is contained in a 56-cap of PG(5, 3),
and

(3) there exists a complete 48-cap in PG(5, 3).

Hence, the caps discussed in (1) and (2) are subsets of non-singular elliptic
quadrics of PG(5, 3).

2.3 Projections of the 56-cap in PG(5, 3)

Suppose that § and o are disjoint subspaces of PG(V, ¢) of dimensions ¢ and
J respectively, with ¢ + j = N — 1. The projection ¢ = @5, from ¢ onto o is
the mapping from PG(XV, ¢) \ 0 onto o defined by

¢ :PG(N,g)\ 0 = 0:Q— (5,Q)No



where (0, Q) is the (i + 1)-dimensional subspace generated by § and Q). Note
that ¢ maps (¢ + 1)-dimensional subspaces containing ¢ onto points of o and
maps (¢ + 2)-dimensional subspaces containing ¢ onto lines of o.

Now suppose K is a subset of PG(V,q). If P is a point of o, we define
o,k (P) to be the cardinality of the set {Q € K\ 0 : ¢(Q) = P}. If p and K
are known, we write p(P) instead of p, x(P). If a line £ in o consists of the
points P, ..., P,, then we call the (¢ + 1)-tuple (u(Fp),. .., u(P,)) the type
of ¢ (with respect to ¢ and K). The points I, . .., P, will usually be ordered
so that u(Py) > p(Py) > -+ > p(P,). We also define u(¢) to be Y7 u(F;).

In particular, we will project the 56-cap in PG(5, 3) from a 2-solid § onto
a line £. Since the hyperplanes of PG(5, 3) intersect the 56-cap in either 20
or 11 points, the type of ¢ with respect to § and this 56-cap is necessarily
equal to (18,18,9,9).

3 Computer results in PG(5,3)

We first describe the computer searches which have shown that

(1) mi(5,3) = 48, so every 49-cap in PG(5,3) is contained in a 56-cap of
PG(5,3), and

(2) the two 20-caps in PG(4,3) of type I'; and A, which have at most 8-
solids, extend to a 56-cap of PG(5, 3), or maximally to a complete 47-cap of
PG(5, 3).

First of all, it is known from [19] that every cap of size at least 47 in
PG(5,3) contains at least one 19- or 20-hyperplane.

3.1 Caps with 20-hyperplanes

A first sequence of computer searches concerned searches for caps containing
hyperplanes with 20 points of the cap. These searches showed

Theorem 3.1 (1) The 20-caps A and I'y in PG(4,3) (Subsection 2.1), hav-
ing at most 8-solids, extend either to the 56-cap of Hill, or mazimally to a
complete 47-cap.

(2) The 20-caps in PG(4, 3) having 9-solids and/or 10-solids are not con-
tained in a complete 49-, 50-, 51-, or 52-cap of PG(5, 3).

(3) A complete 48-cap in PG(5, 3) having 20-hyperplanes, but also at least
one 19-hyperplane with at most 8-solids in this 19-hyperplane, is contained
i a quadric.



(4) For a 49-cap in PG(5,3) having at least one 20-hyperplane, there is
no hyperplane intersecting this 49-cap in a complete 19-cap.

3.2 Caps without 20-hyperplanes

We now consider caps of size at least 49, having at most 19-hyperplanes.
The following lemma shows that every cap of size 50 has at least one
20-hyperplane, unless it has at most 8-solids.

Lemma 3.2 A 50-cap K in PG(5,3) having 9- and/or 10-solids has at least
one 20-hyperplane.

Proof: A solid is contained in four hyperplanes. If the solid is a 9-solid
and there are no 20-hyperplanes through it, then |K| < 9+44-10 < 50, a
contradiction. The same argument can be used for a 10-solid. O

Caps of size 49 or larger having at most 19-hyperplanes and at most 8-
solids will be studied in Theorem 3.4, so from now on, we concentrate on
49-caps having at most 19-hyperplanes and at least 9-solids.

Consider a 49-cap K having at most 19-hyperplanes. Such a 49-cap has
at most 9-solids since if II were a 10-solid, then there would be a hyperplane
through II containing at least 10 + 39/4 > 19 points of K.

Regarding the different types of 19-caps in PG(4, 3) having at most 9-
solids, a computer search showed that the following results are valid. We
note that Part (1) of the following theorem also was found by van Eupen
and Lisonek [36, Lemma 22].

Theorem 3.3 (1) There exist exactly two types of 19-caps in PG(4, 3) having
at most 8-solids. These 19-caps are incomplete.

(2) There exist exactly two types of complete 19-caps in PG(4,3) having
9-solids, but no 10-solids.

(3) There exist exactly siz types of incomplete 19-caps in PG(4, 3) having
9-solids, but no 10-solids.

The computer searches involving large caps in PG(5, 3) having at most
19-hyperplanes gave the following results.

Theorem 3.4 (1) One of the incomplete 19-caps with at most 8-solids is not
contained in a complete 48-, 49-, 50-, 51-, or 52-cap of PG(5, 3).

The other incomplete 19-cap, with at most 8-solids, is contained in a
complete 48-cap, but not in a complete 49-, 50-, 51-, or 52-cap of PG(5, 3).



Moreover, every complete 48-cap, having at most 19-hyperplanes and hav-
ing a 19-hyperplane with at most 8-solids, is contained in a quadric of PG(5, 3).

(2) The two complete 19-caps in PG(4, 3), having 9-solids but no 10-solids,
are not contained in 49-caps of PG(5,3) which have at most 19-hyperplanes
and at most 9-solids.

(3) The siz incomplete 19-caps in PG(4,3), having 9-solids but no 10-
solids, are not contained in 48- and 49-caps containing 9-solids and incom-
plete 19-hyperplanes, but not having 10-solids nor 20-hyperplanes nor com-
plete 19-hyperplanes.

Combining the results of Theorem 3.1 (3), (4) with Theorem 3.4 (1), (2),
the following corollary is obtained.

Corollary 3.5 (1) Every complete 48-cap having a 19-hyperplane with at
most 8-solids in this hyperplane is contained in a quadric.

(2) The complete 19-caps of PG(4,3) are not contained in 49-caps of
PG(5,3).

For the computer searches of Theorem 3.4 (3), we remark that we can
put a large part of the 48- or 49-cap onto a quadric cone or a non-singular
elliptic quadric @~ (5,3). This simplified the computer searches greatly.

We explain these ideas in the following subsection. A similar idea will be
used for the computer searches in PG(6, 3) (Section 6).

3.3 Description of computer searches

We wish to describe the ideas we have used for the computer searches for
caps of size 48 and 49 in PG(5, 3) containing

1. incomplete 19-hyperplanes having 9-solids, but

2. not having 10-solids nor 20-hyperplanes nor complete 19-hyperplanes.

We explain the ideas for the corresponding 48-caps K in PG(5, 3).

Consider a 9-solid IT and let Hy, ..., H3 be the four hyperplanes through
II. Then we can assume that |K N Hy| = |[K N Hy| = |K N Hy| = 19 and
|K N H3| = 18. From the assumptions, we know that the 19-caps K N Hy and
K N H; are incomplete, so contained in 20-caps, so contained in quadrics (g
and @, of Hy and H;.

From [18] and Subsection 2.1, we know that these quadrics @y and @
are elliptic quadric cones. The two quadrics )y and ()7 intersect in II in an



elliptic quadric since a 9-cap in PG(3, 3) lies on a unique elliptic quadric [21,
p. 104].

Since @y and ), are 4-dimensional elliptic quadric cones in two hyper-
planes Hy and H;, intersecting in a 3-dimensional elliptic quadric lying in
Hy N H,, they define a pencil of quadrics. This latter pencil of quadrics
consists of the four quadrics intersecting in the variety Qg U @)1 of degree
four. One of the four quadrics in this pencil is the union Hy U H;. There
are 19 points of K not lying in Hy U Hy; so one of the three other quadrics
in this pencil contains at least 19 + 10 + 19/3 > 35 points of K, where we
first counted the points of K in Hy and H;. So there is a quadric ) in
PG(5,3) containing at least 36 points of the 48-cap K. We show that this
latter quadric is either a non-singular elliptic quadric or a quadric £ Q~ (3, 3)
with vertex a line £ and base a 3-dimensional elliptic quadric @~ (3,3) in a
solid skew to /.

Lemma 3.6 The quadric Q) containing at least 36 points of the 48-cap K 1is
either a non-singular elliptic quadric or a quadric £ Q~(3,3) with vertex line
¢ and with base a 3-dimensional elliptic quadric Q@ (3,3).

Proof: Assume @ is not a non-singular elliptic quadric.

The quadric ) cannot be a non-singular hyperbolic quadric since )y is a
cone over an elliptic quadric.

Also, @ cannot be a quadric cone P (4, 3) with vertex P, for otherwise
P € Hyn H,. If, for instance, P ¢ H,, then Q) N Hy would be a non-singular
quadric Q(4, 3), and we know that @ N Hy is an elliptic quadric cone.

So, P € HyN Hy, but then Q N (Hy N Hy) cannot be an elliptic quadric.

The possibility that @ is a cone £ Q7 (3,3) with vertex a line ¢ and base
a hyperbolic quadric cannot occur since such a quadric can be described as
the union of 4 solids and this contradicts the fact that H, intersects @ in an
elliptic quadric cone. The cases that () is a singular quadric having a vertex
of dimension larger than one need not be considered since Hj intersects () in
an elliptic quadric cone with a point vertex. O

We now show that it is possible to select the 19-cap on () in Hy without
losing generality.

Lemma 3.7 The 19-cap in KN Hy on the quadric Q) can be selected without
losing generality.

Proof: We present the proof for Q = @ (5, 3); the other case is treated
analogously.



The stabilizer group of an elliptic quadric @~ (3, 3) has size |G(Q (3, 3))| =
25 .32 .5. There are 3* hyperplanes in Hy not passing through the vertex
of @ N Hy and the stabilizer group of a cone P Q7 (3, 3) acts transitively on
the solids not through P. For a fixed solid 7 not through P, the involutory
perspectivity with axis 7 and center P also stabilizes P Q~(3, 3); so the cone
P @Q(3,3) is stabilized by a group of size 2° - 3% . 5.

The stabilizer group of @ is a group of size |G(Q(5,3))| =2°-3%.5.7
[23, Theorem 22.6.2]. Since @) has 112 points, the stabilizer group of a point
P € Q within G(Q) has size 2%-35-5 and the only transformation fixing the
points of the tangent cone P Q= (3, 3) point by point is the identity. Hence,
the stabilizer group of P @~ (3, 3) is a subgroup of G(Q~(5, 3)); so it is pos-
sible to select the 19-cap K N Hy on @~ (5, 3) without losing generality. O

So, for investigating the extendability of the incomplete 19-caps of PG(4, 3)
to 48- and 49-caps, we considered the quadrics @ (5,3) and £ Q@ (3, 3), se-
lected an incomplete 19-cap in one of the hyperplanes intersecting the quadric
in a cone P ) (3, 3), and tried to extend the 19-cap to a 48- or 49-cap, under
the assumption that at least 36 points of the cap belong to the quadric. This
made the computer searches much more efficient.

3.4 The second largest size of a complete cap in PG(5, 3)

Theorem 3.8
m’2(5, 3) = 48.

Proof: This follows from the preceding searches. Every 49-cap in PG(5, 3)
contains at least one 19- or 20-hyperplane.

Theorem 3.1 shows that there is no complete 49-, 50-, 51-, or 52-cap in
PG(5,3) containing a 20-hyperplane. The existence of complete 49-, 50-,
51-, or 52-caps, having at most 8-solids and at most 19-hyperplanes, was
eliminated by Theorem 3.4 (1). A cap having 9- or 10-solids, and having at
most 19-hyperplanes, has at most size 49 (Lemma 3.2). The existence of such
a 49-cap was eliminated in Theorem 3.4 and in the paragraphs preceding
Theorem 3.3. The existence of complete 53-, 54-, or 55-caps was already
eliminated in [20].

In [20], a complete 48-cap is presented.

Hence, m}(5,3) = 48. O



4 First consequences for caps in PG(6, 3)

Lemma 4.1 Every 49-cap in PG(5,3) has at least one hyperplane section
which is a 20-cap of type A.

Proof: A computer search of all possible 49-caps contained in the 56-cap
showed that all these 49-caps contain at least one 20-cap of type A. O

Lemma 4.2 FEvery 136-cap K in PG(6,3) has at most 8-solids and at least
one 4-space intersecting K in a 20-cap of type A.

Proof: Suppose first of all that there is a 9-solid Il3. This solid II3 lies in
a 4-space Il intersecting K in at least 9 + 127/13 > 18 points.

Such a 4-space Il containing 19 or 20 points of K lies in a hyperplane
containing at least 49 points of K. But 49-caps in a hyperplane are contained
in a 56-cap of this hyperplane (Theorem 3.8) and a 56-cap does not have 9-
solids (Subsection 2.2).

The same reasoning excludes the case that there are 10-solids.

Hence, K has at most 8-solids. An elementary counting argument shows
that there exist 8-solids. We now prove that there is at least one 4-space
intersecting K in 20 points.

Suppose there is no 4-space with 20 points of K. An 8-solid II; lies in at
least one 4-space containing at least 8 + 128/13 > 17 points of K; so in a
4-space with 18 or 19 points. A 4-space with 19 points lies in a hyperplane
with at least 49 points, and a 49-cap has at least one 4-space with 20 points
(see Lemma 4.1). A 4-space with 18 points lies in a hyperplane with at least
48 points. In this hyperplane there is a 4-space with 19 points of the cap
[19]; so we are reduced to the preceding case.

Now a 4-space with 20 points of K lies in a hyperplane with at least
20 4 116/4 = 49 points of K. And every 49-cap in PG(5, 3) has at least one
hyperplane section which is a 20-cap of type A (Lemma 4.1). a

The information given by the preceding lemmas will enable us to obtain
a lot of information on large caps in PG(6, 3). Before presenting the geomet-
rical arguments and computer searches which reduced the upper bound on
ma(6,3) to 136, we deduce some extra information on caps in PG(5, 3).

5 Introductory results

Lemma 5.1 Let K be an n-cap, n > 45, in PG(5, 3), which is contained in
a quadric Q. Then Q is a non-singular elliptic quadric of PG(5,3).

10



Proof: We check the other possibilities of quadrics.

A non-singular hyperbolic quadric Q* (5, 3) has at most 33+32+3+1 = 40-
caps, see [15].

For finding an upper bound on the size of a cap contained in a cone
P Q(4,3), we note that Q(4, 3) can be covered by 32+ 2 = 11 lines. Namely,
fix a line £ of Q(4,3). Consider the 12 lines of ()(4,3) intersecting ¢ in one
point. Replace in one solid through ¢, which intersects Q(4, 3) in a hyperbolic
quadric, the four lines of the opposite regulus of £ by the three lines different
from ¢ in the regulus through ¢. Then a set of 11 lines of Q(4, 3) is obtained
covering all the points of (4, 3). These 11 lines define 11 planes on P Q(4, 3).
These planes contain at most 11 x 4 = 44 points of a cap on P Q(4, 3).

For the quadric cone ¢ Q% (3,3), this quadric can be described as the
union of four solids; so has at most 4 x 10 = 40 points of a cap. The quadric
¢ @ (3,3) is in fact a union of 10 planes. So at most 4 x 10 = 40 points of
a cap can lie on £ @ (3,3). And a cone 7 (2, 3) is in fact a union of four
solids; so the same result as for £ Q7 (3, 3) is obtained.

Finally, a quadric consisting of two hyperplanes contains at most 2 x 20 =
40 points of a cap. O

Lemma 5.2 A cap K of size at least 45 in PG(5, 3), which lies on a quadric,
cannot lie on a pencil of quadrics.

Proof: Suppose such a cap exists. The preceding lemma shows that all the
quadrics of this pencil are non-singular elliptic quadrics. Suppose that the
quadrics of this pencil intersect in z points. Then, since |Q (5, 3)] = 112
and |PG(5, 3)| = 364,

364=4x (112—12) +

and so £ = 28 which is false. O

Lemma 5.3 Suppose K is a cap of size at least 17 in PG(4,3). Suppose
also that a solid shares at most 8 points with this cap, and that this cap

is contained in o quadric of PG(4,3). Then it is contained in exactly one
quadric of PG(4, 3).

Proof: Suppose these 17 points lie on a pencil of quadrics which intersect
in 17 + z points.

There are | PG(4,3)| — 17 — z = 104 — z points left. So one quadric has
at least 104/4 — x/4 other points. So one quadric has at least 26 + 17 + 3z /4
points in total, and so it is a quadric with at least 43 points.
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We check the two possibilities R Q1 (3,3) and 7 Q7(1,3), where R is
a point and Q*(3,3) is a 3-dimensional hyperbolic quadric in a solid not
containing R, and where 7 is a plane and where @7 (1,3) is a hyperbolic
quadric on a line skew to 7.

In the former case, R Q% (3,3) can be considered to be 4 planes defined
by R and a regulus of @*(3,3). These 4 planes can have at most 16 points
of a cap, a contradiction.

The quadric 7 @*(1,3) is the union of two solids. For K, we know that
solids contain at most 8 points of this 17-cap. So at most 16 points of K lie
in these 2 solids.

So the 17 points do not lie on a pencil of quadrics. O

6 Improvements to the upper bound on m;(6,3)

6.1 First results

We want to make a computer search for 138-caps K in PG(6,3). We know
that a solid contains at most 8 points of a 138-cap. Also there is a PG(4, 3) =
I1, intersecting this 138-cap in a 20-cap of type A (Lemma 4.2).

Now (138 —20)/4 > 29, so I, lies in a hyperplane Hj containing at least
50 points of the 138-cap; so HyNK is contained in a 56-cap lying on a quadric
Qo-

Also (138 — 56)/3 = 82/3 > 27, hence Il lies in a hyperplane H; con-
taining at least 48 points of this 138-cap; and by Theorem 3.1, H; N K lies
on a 56-cap lying on a quadric ).

In this section, we rely on the following computer result.

Theorem 6.1 A 20-cap of type A lying in a hyperplane section II of a
non-singular elliptic quadric Q(5,3) is contained in exactly two 56-caps of

Q (5,3).

For the computer search of the preceding theorem, we relied on the prop-
erty that a 56-cap of Q@7 (5, 3) intersects every line of Q7 (5, 3) in two points
(Subsection 2.2). We will give more details on this computer search in Sub-
section 6.5 since it also led us to the unique starting configuration for the
main computer searches.

6.2 Second results

Lemma 6.2 Consider two elliptic quadrics Qo and @1 in distinct hyper-
planes Hy and Hy, of PG(6,3) sharing a common Q(4,3) in Hy N Hy. The
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quadrics Qo, Q1 define a pencil of quadrics in PG(6,3) consisting of the hy-
perplane pair Hy U Hy, one Q(6,3) and two cones with point vertices and
bases non-singular 5-dimensional elliptic quadrics Q™ (5, 3).

Proof: The only quadrics different from Hy U H; that can occur are non-
singular quadrics Q(6,3) and cones with base Q@ (5, 3).

Now | PG(6,3) \ (Ho U Hy)| = 486.

Suppose there are o quadrics of type Q(6,3) in the pencil, and S cones
with base Q@ (5, 3).

Then oo+ 8 = 3 and 180a+ 1533 = 486 which gives us the solution oo = 1
and 8 = 2. O

From the preceding subsection, we know that Hy intersects K in a subset
of a 56-cap lying on the elliptic quadric )y, and that H; intersects K in a
subset of a 56-cap lying on the elliptic quadric @)1, where K N HyN H; is a
20-cap of type A.

We now show that, using projective equivalence, there is a unique config-
uration for Qg and )1, and that it is also possible to fix uniquely the 56-caps
within @)y and (); containing the intersections Hy N K and H; N K. We
will do this by studying in detail the stabilizer group of the unique quadric
@ = Q(6,3) containing @y and @), and also by using the stabilizer group of
the 56-cap, and of the quadric Q(4,3) = Q N Hy N H;.

6.3 The possible starting configurations for )y and

Lemma 6.3 Under G(Q(6,3)), there exist exactly two orbits of 4-spaces of
PG(6,3) which intersect a given quadric Q(6,3) in non-singular quadrics

Q(4,3).

Proof: The 4-spaces of PG(6, 3) intersecting a given quadric Q(6, 3) in non-
singular quadrics (Q(4,3) are the polar spaces of the external lines and the
bisecant lines to (6, 3); so there are two orbits. O

Theorem 6.4 Suppose Q(4,3) in the 4-space I14 on Q(6,3) is the polar space
of an external line to Q(6,3). Then two of the 4 hyperplanes through 11, in-
tersect Q(6,3) in a non-singular quadric Q@ (5, 3), and two in a non-singular
quadric QT (5, 3).

Proof: The 4 hyperplanes through Il can only intersect Q(6,3) in elliptic

quadrics @~ (5, 3) or hyperbolic quadrics Q@ (5, 3) since the polar line of Il
is skew to Q(6, 3).
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Suppose « hyperplanes intersect (Q(6,3) in elliptic quadrics and § hy-
perplanes intersect Q(6,3) in hyperbolic quadrics. Then standard counting
gives us the result « = g = 2. O

A similar argument proves the following result.

Theorem 6.5 Suppose Q(4,3) in the 4-space I14 on Q(6,3) is the polar space
of a bisecant to Q(6,3). Then two of the 4 hyperplanes through 11, intersect
Q(6, 3) in tangent hyperplanes, one in a non-singular elliptic quadric Q= (5, 3)
and one in a non-singular hyperbolic quadric Q™ (5, 3).

Corollary 6.6 Using the notations of Subsection 6.1, the 4-space intersect-
ing K in a 20-cap of type A is the polar space of an external line to Q(6,3).

Proof: Since we know that the 20-cap on (4, 3) in II4 lies on two elliptic
quadrics in two hyperplanes through Il,, necessarily II, is the polar space of
an external line to Q(6, 3).

6.4 The stabilizer group of a quadric Q(4,3) on Q(6,3)
corresponding to a polar external line

We know that Il intersects K in a 20-cap of type A lying on two elliptic
quadrics @y and @i, which lie on a non-singular quadric Q(6,3), and that
I1, is the polar space of an external line to Q(6,3). We now show that we
can select this 20-cap in II; without losing generality.
Let Q : X2 + X1 Xy + X3X, + X2 + X2 = 0 be the quadric Q(6, 3).
Then L : Xy = X; = Xo = X3 = X; = 0 is an external line to Q(6,3).
Its polar 4-space is X5 = Xg = 0. Hence Q(4, 3):

X5:X6:0
Xg+X1X2+X3X4:0

The transformations fixing Q(6,3), fixing X5 = Xg = 0 and its polar
space Xo = X1 = Xy = X3 = X, =0, are of type

0 0
(=) EAVED
T9 A 0 0 T9
z3 | — 0 0 Z3
T4 0 0 T4
00 0 0O0B
\22) \ 00000 /\iZ)

14



where A stabilizes the part Xg + XX, + X3X, and where B stabilizes the
part X2 + X¢.

If (20, 21,72, 23,74)" — A(zo, 71, To, T3,74)" maps X7 + X1 X, + X3X,
onto Xg + X1 Xy + X3Xy, then select B = Iy; if (zg,z1, 72,23, 24)" +—
A(z, 71, To, T3, T4)" maps X2 + X7 Xo + X3X, onto —(XZ + X1 Xp + X3Xy),
1 1

then select B = ( 11

) . This maps XZ + X onto

(X5 + X6)® + (X5 — X6)* = — (X7 + X3).

So the stabilizer group of (4, 3) is still available as a subgroup of G(Q(6, 3))
when (4, 3) is the polar space of an external line to Q(6,3). This implies
that it is possible to select the 20-cap of K in Hy N H; uniquely without
losing generality.

We can also select Hy, H; without losing generality.

The hyperplanes X5 = 0 and Xg = 0 intersect (6, 3) respectively in the
elliptic quadrics X2+ X2+ X1 Xo+X3X, = 0 and XZ+ X2+ X1 Xo+X3X, = 0.

The involution (X(), ... ,X4, X5, X6) — (X(), ceey X4, XG, X5) ﬁXiIlg Q(6, 3),
fixes Hy N H; point by point, and interchanges X5 = 0 and X4 = 0; so let
Hy: X¢=0and H; : X5 =0.

6.5 The starting configuration

The hyperplanes Hy and H; intersect K in subsets of 56-caps lying on @)y
and ;. We now show that it is possible to select these two 56-caps without
losing generality.

Consider the elliptic quadric Q@ (5,3) : Xg+ X7+ X2+ X2+ X7+ X2 = 0.
This elliptic quadric consists of the projective points whose coordinates have
weight 3 or 6. Let D be the 2-(6,3,2)-design with blocks

{1,2,3},{1,2,4},{2,4,5},{3,4,5},{1, 3,5},

{1,4,6},{1,5,6},{2,3,6},{2,5,6},{3,4,6}.

Consider the 20-cap on this quadric @ (5, 3) lying in X5 = 0 where the
points have coordinates whose supports correspond to the first five blocks of
D.

Then this 20-cap is a 20-cap of type A since X5 = 0 intersects @~ (5, 3)
in a non-singular quadric. This 20-cap of type A extends in two ways to a
56-cap contained in @~ (5,3) (Theorem 6.1). The first 56-cap consists of the
points having coordinates of weight 3 corresponding to the blocks of D and
the points having coordinates of weight 6 having an even number of 1’s. The
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other 56-cap is obtained by taking the same points of weight three and the
complementary points of weight 6.

Consider now the quadric Q : X + X? + X2 + X2+ X7+ X2+ X2 =0
in PG(6,3). The intersections of Hy : X¢ = 0 and H; : X5 = 0 are elliptic
quadrics and Hy N H; intersects () in a non-singular 4-dimensional quadric.
The polar space of HyN H; with respect to () is an external line with respect
to Q.

From the results of the preceding subsection, we know that we can select
the 20-cap of type A in @) N Hy N H; without losing generality. Select this
20-cap to be equal to the one described by D. Then this 20-cap extends in
two ways to a 56-cap on (Q N Hy and in two ways to a 56-cap on QQ N H;.

Consider first of all the involution (X, ..., X5, Xs) — (Xo, ..., X5, —Xs)-
This involution fixes Hy point by point and interchanges the two 56-caps in
H,. Hence, we can select the 56-cap in H; without losing generality. Simi-
larly, the involution (X, ..., X4, X5, Xs) — (Xo, ..., X4, — X5, X¢) fixes H;
point by point, but interchanges the two 56-caps in Hy. Hence, also in Hj,
we can select the 56-cap without losing generality.

The conclusion is: Regarding the intersections of Hy and H; with the
138-cap K, we can make sure that without loss of generality:

1. II; is a 4-dimensional space intersecting K in a 20-cap of type A.

2. If Hy, Hy, Hy, H3 are the hyperplanes through I, where |K N Hy| >

3. There is a non-singular parabolic quadric @ in PG(6, 3) containing the
intersections K N Hy and K N H;.

4. We may select on () the 56-cap Cy in Hy containing K N H, without
losing generality.

5. We may select on @) the 56-cap C in H; containing K N H; without
losing generality.

6.6 Computer results

This configuration was the starting configuration for a computer search for
large caps in PG(6, 3).

This search led to the following results.

In Table 3, z = |[K N Hy| and y = |K N Hy|.

The number n means that there is no n-cap in PG(6, 3) having z points of
Cy in Hy, and y points of C; in H;, where HyN H; shares 20 points with this
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n-cap; 20 points lying on a non-singular quadric Q(4,3). Here, we assume
T >.

x Y no n-cap for n =
56 > 52 113
55|55 >y > 53 113
54 54 113
56 | b1 >y > 48 132
55|52 >y > 48 132
54 |53 >y > 49 132
53|53 >y >50 132
52 (52 >y > 51 132
54 48 135
53149 >y > 48 135
52|50 >y > 48 135
51| 51>y > 49 135
50 50 135
Table 3

These results enable us to eliminate the existence of 138-caps in PG(6, 3).
Theorem 6.7 There does not ezist a 138-cap in PG(6, 3).

Proof: Suppose there is a 138-cap in PG(6, 3). From the preceding results,
we know it is possible to find a 4-space 11, intersecting this 138-cap in a 20-
cap of type A. This 4-space lies in two hyperplanes Hy and H; intersecting
K in caps of size at least 50 and 48, lying on elliptic quadrics Qg and ;.
Using the notations z and y of Table 3, we get the following possibilities

T |y
56 | > 48
55 | > 48
54 | > 48
53| > 49
52| > 49
51| > 49
50 | = 50

From Table 3, no such 138-cap exists. a
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7 No 137-caps in PG(6,3)

Using some extra computer searches and geometrical arguments, it is also
possible to prove the non-existence of 137-caps in PG(6,3). Let K be a
137-cap in PG(6, 3). We first state the following computer search result.

Lemma 7.1 A 137-cap K in PG(6,3) does not contain a 20-cap of type A
lying in a 56-hyperplane and in three 47-hyperplanes.

The results of Table 3 and the preceding lemma show that a 4-space 11,
intersecting K in a 20-cap of type A lies in one 50-hyperplane and in three
49-hyperplanes. Let H; be the 50-hyperplane passing through II, and let
H,, Hy, H3 be the three 49-hyperplanes passing through II,. Denote by @);
the elliptic quadrics in H;, ¢ = 0, 1,2, 3, containing the intersections H; N K.

Consider )1 and (3. These two 5-dimensional elliptic quadrics intersect
in the 4-dimensional parabolic quadric containing the 20-cap K N1l of type
A. Hence, analogously as in Subsection 3.3, they define a pencil of four 6-
dimensional quadrics intersecting pairwise in the variety ()1 U 2 of degree
four. One of these four 6-dimensional quadrics is H; U Hy,. We show that
one of the three other quadrics of this pencil contains at least 113 points of
K. This will give us the desired contradiction.

This latter contradiction is obtained by geometrical arguments and the
following additional computer search results.

Lemma 7.2 Consider an arbitrary 50-cap Kso in PG(5,3), then K5 con-
tains a 20-cap Ay of type A which is intersected in eight points of Ksy by
s > 8 other 20-caps A;, 1 =1,...,s, of type A, contained in Ksxg.

We now construct inductively a subset G of Kjo \ Ag. We describe the
construction of the set G' in pseudo-code.

G .= Al \ AO
REPEAT
9:=1G|

FOR :=2TO s DO

IF (A;\ Ag) NG # () THEN
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G:=GU (A \ A)
END IF
END FOR
UNTIL |G| =g
Then the computer searches showed the following result.

Lemma 7.3 Consider an arbitrary 50-cap Kso in PG(5,3), then K5y con-
tains a 20-cap Ay of type A which is intersected in eight points of Ksy by
s > 8 other 20-caps A;, i = 1,...,s, of type A, contained in Ksy, and for
which |G| > 28.

We now have the required computer results to exclude the existence of
137-caps in PG(6, 3).

Lemma 7.4 If K is a 137-cap in PG(6,3), then there is a quadric Q of
PG(6,3) which contains at least 113 points of K.

Proof: We start with the information on the 4-space II; and the quadrics
Qo, ..., Qs in the hyperplanes Hy, ..., Hs, described at the beginning of Sec-
tion 7. Select the 20-cap of type A in Hy N K in such a way that for this
20-cap, the corresponding set G of the 50-cap K N Hy satisfies |G| > 28
(Lemma 7.3). Similarly, using the notations of Lemma 7.3, denote II; N K
by Ay and denote by A;,72=1,...,s, s > 8, the 20-caps of type A in KN H
intersecting A in 8 points.

We now use the points of the set G in the same order as they were added
to the set GG in the description above of the construction of G.

First of all, consider the 20-cap A; lying in the 4-space Hg) of Hy. Let
R € A;\ Ay. Consider the unique 6-dimensional quadric @ containing R
and the quadrics ;1 and )s.

Then also this 20-cap A; lies in four elliptic quadrics @y, ..., Q%, lying
in the four hyperplanes through HS), and sharing respectively 50, 49, 49, 49
points with K. Let Qj = Q.

Consider the solid Hgl) =1, N HS) sharing 8 points with K. The four
hyperplanes H, ..., H} through Hil) intersect H; in the four 4-spaces of H;
through Hz(,,l). These four 4-spaces all intersect the 56-cap containing H; N K
in 20 points since |Hgl) NK| = 8. At most one of these four 4-spaces intersects
H; N K in less than 17 points.
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The same arguments are valid for the cap Ho N K.

This implies that at least one of the quadrics @)}, @5, @5, for instance ()5,
shares at least 17-caps with H; N K and Hy N K. These latter 17-caps are
contained in a unique 4-dimensional quadric (Lemma 5.3). Hence, ()} shares
the point R, and two 4-dimensional quadrics Q5 N Q1 and Q4 N Q2 with Q.
Then Bézout’s theorem implies that ()5 C (). This also implies that A; C Q.

We now prove that the other points of G' belong to (). We prove that
they belong to @) in the same order as they were added to the set G.

Suppose that at a certain point in the REPEAT UNTIL loop of the
pseudo-code above, the set of points A; \ Ay, i > 2, was added to G. This
was done because of the fact that the intersection A; N G was not empty.
Assume by induction that it is already proven that all points of G, which
belonged to G before A; \ Ay was added to G, belong to the quadric Q.

Then we repeat the arguments above for A;, but now for A;. The cap
A; lies in at least one 5-dimensional elliptic quadric @)%, different from Qy,
sharing at least 17 points with H;NK and H,N K. This latter elliptic quadric

% then already shares two 4-dimensional quadrics Q4 NQ; and Q5 N Q2 with
(). This quadric )% also contains the 20-cap A;, containing at least one point
R’ of the set G. Note that R’ ¢ Ay and that, by assumption, R’ € ). Hence,
following Bézout’s theorem, Q% C Q.

So, the 20-cap A; is contained in Q).

Since |G| > 28 and since Aq is a 20-cap, ) necessarily contains at least
48 points of the 50-cap K N H,. This latter cap of size at least 48 only lies
on the quadric @ (Lemma 5.2). Hence, @ N Hy = Qo.

This already implies that the quadric () contains at least 50 + 49 4 49 —
2 x 20 = 108 points of K.

In fact, () contains at least 113 points of K. Consider again the quadric
()% which is contained in ). It shares at least 49 points with K, of which at
least 13 lie in H3. Eight of those points are the points of Ag N A;; so adding
at least 5 to | K| > 108 gives |K| > 113. O

Theorem 7.5 There does not exist a 137-cap K in PG(6, 3).

Proof: The preceding lemma shows that if there is a 137-cap K in PG(6, 3),
then there is a quadric () containing at least 113 points of K. We know that
there is at least one 5-dimensional elliptic quadric Q N Hy on Q.

Hence Q = Q(6,3) or a cone with a point vertex and as base a non-
singular 5-dimensional elliptic quadric @~ (5, 3).

Case 1: Q = Q(6,3). The quadric Q(6,3) has a spread, i.e. a partition
into 28 planes, see e.g. [23, p. 348|. Each plane has at most a 4-cap. So
Q(6, 3) has at most a 28 x 4 = 112-cap.
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Case 2: Q = cone with base @~ (5, 3). The quadric @~ (5, 3) has a spread,
i.e. a partition into 28 lines. For instance, consider a spread of Q(6,3) as
stated in the preceding case. Consider a hyperplane intersecting Q(6,3) in a
non-singular elliptic quadric; then this hyperplane intersects each of the 28
planes of the spread of Q(6, 3) in a line, yielding a spread of lines of Q@ (5, 3).

Hence it is possible to cover () with 28 planes, so () has at most a
28 x 4 = 112-cap, a contradiction. O

There exists a 112-cap in PG(6,3) (Section 1). Hence, the following
corollary is valid.

Corollary 7.6
112 < my(6,3) < 136.
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