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Abstract

A major contribution of [1] is a reduction of the problem of correct-

ing errors in quantum computations to the construction of codes in

binary symplectic spaces. This mechanism is known as the additive

or stabilizer construction. We consider an obvious generalization of

these quantum codes in the symplectic geometry setting and obtain

general constructions using our theory of twisted BCH-codes (also

known as Reed-Solomon subfield subcodes). This leads to fami-

lies of quantum codes with good parameters. Moreover the generator

matrices of these codes can be described in a canonical way.
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1 Introduction

The translation from quantum error correction to the language of error-
correcting codes as given in [1] leads to quaternary codes, which are linear
over IF2. This is known as the additive or stabilizer construction. For back-
ground and motivation the reader is advised to consult [1] and its extensive
bibliography. It is natural to consider a generalization from IF2 to an arbi-
trary finite ground field IFq. In fact it was remarked in [3] that the additive
construction extends to the nonbinary case in a natural way. This motivates
the following definition:

Definition 1. Let E = V (2, q) = IF 2
q be the 2-dimensional vector space over

IFq. An IFq−linear quantum code [[n, k, d]]q is an IFq−subspace C ⊂ En,

which satisfies the following conditions:

1. C has IFq−dimension n− k.

2. C ⊆ C⊥. Here the dual is taken with respect to an IFq−linear symplectic

scalar product on En, where each copy of E is a hyperbolic plane.

3. The elements in C⊥ \ C have weight ≥ d.

It may have been more appropriate to choose a neutral notation, using the
notion of a quantum code only when quantum computations are involved.
However, the notational confusion between discrete objects and objects of
Hilbert spaces is already in [1].

Code C is pure if C⊥ has minimum distance d. The highest value of k,
which makes sense, is k = n. In this case C is the 0-code, its dual is the
whole space and we have a code [[n, n, 1]]q. This is not very interesting. The
opposite extreme is k = 0. In this case C is self-dual. The convention is to
define d as the minimum nonzero weight of C in this situation. We want to
apply a variant of our theory of twisted BCH-codes as developed in [2].

As we are going to work in symplectic geometry let us fix notation:
Let V = V (2n, q) be a 2n-dimensional vector space, endowed with a non-
degenerate symplectic bilinear form 〈, 〉.
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A hyperbolic plane is a 2-dimensional subspace H ⊂ V, such that the
restriction of 〈, 〉 to H is non-degenerate. A symplectic basis of V is a
basis {vj|j = 1, 2, . . . , n} ∪ {wj|j = 1, 2, . . . , n}, where 〈vj, vk〉 = 〈wj, wk〉 =
0, 〈vj, wk〉 = δjk = −〈wj, vk〉. In particular V is the orthogonal sum of the
hyperbolic planes Hj = vjIFq + wjIFq.

2 The contribution of linear codes

We use the terminology of the introduction. Let F = IFq2 and x = xq the
conjugate of x ∈ F. Let C be an F -linear code of length n, which is self-
orthogonal (C ⊆ C⊥) with respect to the hermitian form. This means that
whenever (x1, x2, . . . , xn) ∈ C and (y1, y2, . . . , yn) ∈ C we have

n∑
i=1

xiyi = 0.

Let Φ : F −→ IFq be a surjective IFq−linear mapping. Choose a basis {ω1, ω2}
of F | IFq, expand x ∈ F in the form x = α1(x)ω1 + α2(x)ω2. This gives us
an IFq-isomorphism from C to the IFq-linear code C ′ of length 2n, where

(x1, . . . , xn) 7→ (α1(x1), α2(x1), . . . , α1(xn), α2(xn)).

We claim that Φ, ω1, ω2 can be chosen such that C ′ is self-orthogonal with
respect to the symplectic scalar product. This will prove the following gen-
eralization of [1], Theorem 3.

Theorem 1. Let C be an IFq2−linear code of length n, dimension n − k

and dual distance d, which is self-orthogonal with respect to the Hermitian

inner product. Then there is an IFq-isomorphism from C to C ′ such that C ′

is an IFq− linear q2 − ary code, which is self-orthogonal with respect to the

symplectic form and yields a pure quantum code [[n, 2k − n, d]]q.

Proof. Choose 0 6= γ ∈ F such that tr(γ) = 0 and define Φ by Φ(x) = tr(γx).

Here tr : F −→ IFq is the trace. If x ∈ IFq, then Φ(x) = tr(γx) = xtr(γ) = 0.
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As before consider (x1, x2, . . . , xn) ∈ C and (y1, y2, . . . , yn) ∈ C. We have∑n
i=1 xiyi = 0. Using the basis {ω1, ω2} we obtain

xiyi = α1(xi)α1(yi)ω1ω1 + α2(xi)α2(yi)ω2ω2+

+α1(xi)α2(yi)ω1ω2 + α1(yi)α2(xi)ω2ω1

As ωjωj ∈ IFq we see that Φ vanishes on the first two summands. Comparison

with the symplectic form shows that it suffices to choose the basis such that

Φ(ω1ω2) = 1 and Φ(ω2ω1) = −1. Let α ∈ F such that tr(γα) = 1. Choose

ω1 as an arbitrary nonzero element of F, let ω2 be determined by α = ω1ω2.

ω1, ω2 do form a basis (if ω2 = λω1 for some λ ∈ IFq, then tr(γα) = 0,

contradiction). We have Φ(ω1ω2) = tr(γα) = 1. Further tr(γα + γα) =

tr(γtr(α)) = tr(α)tr(γ) = 0. It follows Φ(ω2ω1) = −1.

3 Twisted codes

In this section we develop the theory of twisted codes as far as it applies to
the problem at hand. Our approach is somewhat different from the method
used in [2]. Also, we specialize the theory of twisted codes in two respects:
we consider only the quadratic case and we choose the underlying bilinear
form to be symplectic.

Let F = IFqr and E a 2-dimensional IFq−vector space (the fact that
dimIFq(E) = 2 expresses the fact that we are in the quadratic case). Let Φ :
F −→ E be a surjective IFq−linear mapping. We fix a divisor n|(qr − 1) and
a subset A ⊂ ZZ/nZZ. Consider the array B(A) = B(A, n, q). The columns
of B(A) are indexed by the elements u of the subgroup W of order n of
F ∗. Let P(A) = {

∑
i∈A aiX

i|ai ∈ F}. The rows of B(A) are indexed by the
polynomials p(X) ∈ P(A). The entry in row p(X) and column u ∈ W is
defined as p(u).

Definition 2. Identify E with IF 2
q . Then every row of Φ(B(A, n, q)) can be

seen as a 2n−tuple over IFq. Fix a nondegenerate symplectic IFq-bilinear form
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〈, 〉 on V = En = IF 2n
q with symplectic basis {vu|u ∈ W}∪{wu|u ∈ W}. Then

V is the orthogonal sum of the hyperbolic planes Hu generated by vu and wu.

Define C(A) = C(A, n,Φ) = (Φ(B(A)))⊥, where the orthogonal is with respect

to the symplectic form 〈, 〉 in V.

Let tr : F −→ IFq be the trace. We can find γ1, γ2 ∈ F such that
Φ(x) = (tr(γ1x), tr(γ2x)). If we replace γi by γγi, this has the effect of a
permutation of the rows of Φ(B(A)). It follows that we can assume without
restriction

Φ(x) = (tr(x), tr(γx)) for some γ ∈ F \ IFq.
Here the condition γ /∈ IFq assures that Φ is onto. It follows that Φ is
determined by the choice of γ. An important parameter is the degree
κ = [IFq(γ) | IFq]. We note that κ > 1 can be chosen among the divisors of r.

Our first and most difficult aim is the determination of the IFq−dimension
of C(A).

4 The dimension of twisted codes

Definition 3. Call a polynomial p(X) ∈ F [X] cyclotomic if all the expo-

nents of its nonzero monomials belong to the same cyclotomic coset. Here

a cyclotomic coset is an orbit of the Galois group G = Gal(F |IFq) in its

action on the integers mod n. Recall that the Frobenius automorphism oper-

ates as multiplication by q and that G, a cyclic group of order r, consists of

the powers of the Frobenius automorphism.

Clearly dim(C(A)) = 2n − dim(Φ(B(A))), where dim(Φ(B(A))) denotes
the dimension of the row space of Φ(B(A)). We make use of the following
theorem, which is all but trivial but nevertheless of fundamental importance
(see Lemma 1 of [5]):

Theorem 2. Let C be linear code over F = IFqr . Let tr : F −→ IFq be the

trace. Assume C = Cq (C is Galois invariant). Then the following hold:
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• tr(C) = C|IFq .

• The IFq-dimension of tr(C) equals the F -dimension of C.

Let B ⊂ F n be an F -linear code. We define (B, γB) = {(v | γ ·v) | v ∈ B},
a code of length 2n and the same dimension as B. By definition of Φ we
have Φ(B(A)) = tr((B(A), γ · B(A))). Finally let D(A) = Dγ(A) be the
Galois closure of (B(A), γ · B(A)), that is the smallest code containing
(B(A), γ · B(A)), which is Galois invariant. Theorem 2 yields the following:

Theorem 3. dimIFq(C(A)) = 2n − dimF (D(A)), where D(A) is the Galois

closure of (B(A), γ · B(A)).

We will determine the dimension d(A) of the F -linear code D(A) (see
Theorem 3). It will be convenient to identify the row of B(A) indexed by
polynomial p(X) with that polynomial itself. In this notation the elements of
(B(A), γ ·B(A)) are the pairs (p(X), γ ·p(X)), where p(X) ∈ P(A). We define
a symplectic structure on the underlying space F 2n, which we can view as a
tensor product V ⊗IFq F. In our short notation V ⊗IFq F = {(p(X), q(X)) |
deg(p(X)), deg(q(X)) < n}. We use the same symplectic basis and the same
symbol for the symplectic scalar product. This scalar product on V ⊗IFq F is
then as follows:

〈(p(X), q(X)), (p′(X), q′(X))〉 =
∑
u∈W

p(u)q′(u)− q(u)p′(u).

Lemma 1. Let Z be a cyclotomic coset. Denote by (V ⊗IFq F )Z the set of all

(p(X), q(X)), where p(X), q(X) ∈ P(Z). Then dim((V ⊗IFq F )Z) = 2|Z|,

V ⊗IFq F =
⊕
Z

(V ⊗IFq F )Z

and (V ⊗IFq F )⊥Z is the sum of all (V ⊗IFq F )Z′ , where Z ′ 6= −Z.

This is almost trivial. The last statement of the lemma follows from the
fact that

∑
u∈W ui = 0 unless i is a multiple of n. If p(X) ∈ P(Z), then the

Galois closure of (p(X), γ · p(X)) is contained in (V ⊗IFq F )Z . It follows that
D(A) is the direct sum of its subspaces DZ(A) = D(A)∩ (V ⊗IFq F )Z , where
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Z varies over the cyclotomic cosets. Let dZ(A) be the dimension of DZ(A).
We have seen d(A) =

∑
Z dZ(A) and dZ(A) ≤ 2 | Z | . Clearly dZ(A) = 0 if

Z ∩ A = ∅.
Let now Z be such that Z ∩ A 6= ∅. To fix notation put

Z = {z0, z1, . . . , zs−1} such that zi = z0q
i (calculation mod n). Let zi ∈ Z∩A.

The Galois closure of (Xzi , γ ·Xzi) is

Dzi(A) = {(
s−1∑
j=0

ajX
zj ,

s−1∑
j=0

γq
i−j+νs

ajX
zj) | aj ∈ F, ν = 0, . . . , r/s− 1}

Assume we have γq
i−j+νs 6= γq

i−j
for some choice of ν. This is equivalent

with κ not dividing s and we have dim(Dzi(A)) = 2s in this case, hence
DZ(A) = (V ⊗IFq F )Z . So assume κ | s. We have dim(Dzi(A)) = s whenever
zi ∈ Z ∩ A, and DZ(A) is the sum of the spaces Dz(A), where z varies
over Z ∩ A. Let now zi and zi′ be different elements in Z ∩ A. Assume
Dzi(A) 6= Dzi′ (A). The description of these spaces shows that they intersect
in the 0-space then. It follows that dZ(A) = 2s in this case as well. We

see that Dzi(A) = Dzi′ (A) is now equivalent with γq
i−j

= γq
i′−j

for all j,

which in turn is equivalent with γq
i−i′

= γ. The definition of κ shows that
it is equivalent with i − i′ being a multiple of κ. As the κ−th power of the
Frobenius automorphism generates the subgroup H of order r/κ of the Galois
group we are led to the following:

Definition 4. Let A ⊂ ZZ/nZZ and let Z ⊂ ZZ/nZZ be a cyclotomic coset

such that Z ∩ A 6= ∅. We call Z ∩ A unsaturated if κ divides |Z| and the

subgroup H of order r/κ of the Galois group G is transitive on Z ∩ A.

In case κ = r we have that Z ∩A is unsaturated if and only if Z has full
length r and |Z ∩ A| = 1. We have seen the following:

Theorem 4. The dimension d(A) of the Galois closure D(A) of

(B(A), γ · B(A)) is d(A) =
∑

Z dZ(A), where the sum is over all cyclotomic

cosets Z and
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dZ(A) =


0 if Z ∩ A = ∅

s if Z ∩ A is unsaturated

2s if Z ∩ A is saturated

It follows from Theorem 3 that we have determined the dimension of
C(A) :

Theorem 5. The dimension c(A) of C(A) = (Φ(B(A)))⊥ is

c(A) =
∑

Z cZ(A), where the sum is over all cyclotomic cosets Z and

cZ(A) =


2s if Z ∩ A = ∅

s if Z ∩ A is unsaturated

0 if Z ∩ A is saturated.

5 The structure of twisted codes

The results of the preceding section lead to an almost canonical representa-
tion for the code words of Φ(B(A)) and its dual C(A). In the case of Φ(B(A))
we have

Φ(B(A)) =
⊕
Z∩A 6=∅

tr(DZ(A)).

Here dimIFq(tr(DZ(A))) = dimF (DZ(A)) = dZ(A) (see Theorem 2). Put
|Z| = s, fix z ∈ Z. Let αi, i = 1, . . . , s be a basis of a complement of IF⊥qs
in F. Here ⊥ is with respect to the trace form. If Z ∩ A is saturated, then
DZ(A) = (V ⊗IFq F )Z . A basis of the 2s−dimensional space (V ⊗IFq F )Z is
given by the words with entry (tr(αiu

z), 0) in the hyperbolic plane Hu and
by the words with entry (0, tr(αiu

z)) in Hu (see Definition 2). The fact
that these words are indeed linearly independent follows from the following
lemma:

Lemma 2. With the established terminology the following holds:

If the cyclotomic coset Z containing z has s elements, then the

IFq−subspace 〈uz | u ∈ W 〉 generated by the uz is the subfield IFqs .
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Proof. We have (uz)q
s

= uz, hence uz ∈ IFqs . On the other hand it is obvious

that 〈uz | u ∈ W 〉 is closed under multiplication, hence a subfield. This

subfield cannot be smaller that IFqs as otherwise |Z| < s.

Let now Z ∩ A be unsaturated. We know that dim(tr(DZ(A))) = s in
this case. The words with entry (tr(αiu

z), tr(γαiu
z)) in Hu form a basis of

tr(DZ(A)) (i = 1, . . . , s).
An analogous procedure may be used in the case of C(A). We have

C(A) =
⊕
Z

tr(CZ(A)),

where CZ(A) ⊆ (V ⊗IFq F )−Z and the sum is over all Z such that Z ∩ A is
not saturated. If Z ∩ A = ∅, then CZ(A) = (V ⊗IFq F )−Z and we have seen
above how to obtain a basis of tr((V ⊗IFq F )−Z).

Let Z ∩A be unsaturated. We have dim(tr(CZ(A))) = s. The words with
entry (tr(αiu

−z), tr(γαiu
−z)) in Hu form a basis of tr(CZ(A)) (i = 1, . . . , s).

This discussion also shows that duals of twisted codes are twisted codes
and how the defining intervals may be obtained:

Lemma 3. The maximum defining set Ã ⊇ A such that C(Ã) = C(A) is

Ã =
⋃

Z∩A sat

Z ∪
⋃

Z∩A unsat

(Z ∩ A)H ,

where (Z ∩ A)H denotes the H-orbit containing Z ∩ A.

Φ(B(A)) = C(A)⊥ = C(B), where

B = B̃ =
⋃

Z∩A=∅

−Z ∪
⋃

Z∩A unsat

−(Z ∩ A)H .

Our bound on the minimum distance of C(A) is a generalization of the
famous BCH-bound for cyclic codes.

Proposition 1. If A contains an interval [l, l+t−2] = {l, l+1, . . . , l+t−2}

of t− 1 consecutive numbers (mod n), then Φ(B(A)) is an orthogonal array

of strength t− 1. The minimum distance of C(A) is ≥ t.
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In order to prove Proposition 1 we can clearly assume A = [l, l+t−2]. The
proof that Φ(B(A) has strength t− 1 is identical to the proof of Proposition
1 in [2]. It is an easy consequence of Lagrange interpolation. The proof that
C(A) has minimum distance ≥ t follows just as in the case of Theorem 1 of
[2]. The only property of the bilinear form that is used is its nondegeneracy.

In order to decide when Φ(B(A)) is a quantum code we have to determine
when it is self-orthogonal.

Theorem 6. With the notation q, n | (qr − 1), γ,Φ, κ, A,G as above, let

H ⊂ G be the subgroup of order r/κ of the Galois group G = Gal(F | IFq).

Then Φ(B(A)) ⊆ Φ(B(A)⊥ = C(A) if and only if the following are satisfied

for all cyclotomic cosets Z :

1. If Z ∩ A is saturated, then (−Z) ∩ A = ∅.

2. If Z ∩A is unsaturated, then H is transitive on (Z ∩A)∪−((−Z)∩A)

(equivalently: (−Z) ∩ A = ∅ or (Z ∩ A)H = −((−Z) ∩ A)H).

Proof. By our earlier discussion we see that the only critical case is when

Z ∩ A is unsaturated. Clearly a necessary condition is that (−Z) ∩ A be

unsaturated or empty. The exact condition follows from Lemma 3.

6 The parameters of quantum twisted codes

We use the terminology introduced earlier. As defining set we choose an
interval A = [l, l + t − 2]. The mapping Φ is determined by the choice of
γ ∈ F \ IFq. Φ(B(A)) and C(A) are q2 − ary and IFq-linear. They are duals
of each other with respect to the symplectic scalar product. The following
describes the output of our method what quantum codes are concerned.

Theorem 7. Let A = [l, l+ t− 2]. If Φ(B(A)) ⊆ C(A) and dim(C(A)) = K,

then Φ(B(A)) is a pure IFq-linear quantum code [[n,K − n, t]]q.
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Here the dimension K of C(A) is determined by Theorem 5. The self-
orthogonality of Φ(B(A)) is decided by using Theorem 6.

As a first example we construct a quantum code [[21, 6, 5]]2. The cyclo-
tomic cosets mod 21 are as follows:

cyclotomic cosets
0
1,2,4,8,16,11
3,6,12
5,10,20,19,17,13
7,14
9,15,18

As 21 | 26−1 we have r = 6 (this is the maximum length of the cyclotomic
cosets). As we aim at a code with minimum distance 5 we choose as defining
set an interval of length 4. Let A = {1, 2, 3, 4}. The mapping Φ is determined
by the choice of γ. We use γ ∈ IF8, hence κ = 3. The binary dimension K
of the twisted BCH-code C(A) is obtained from Theorem 5. The cyclotomic
cosets not intersecting A yield a contribution of 24, the coset Z(3) intersects
A only in 3. This gives another contribution of 3 to the dimension. We
conclude that the additive quaternary code C(A) of minimum distance ≥ 5
has binary dimension 27. The conditions of Theorem 6 are trivially satisfied
as for every i ∈ A we have Z(−i)∩A = ∅. We conclude that we have a pure
quantum code [[21, 6, 5]]2.

7 Standard lengthening

Theorem 8. Consider the twisted code Φ(B(A)), where A = [1, t − 1]. If

Φ(B(A)) is a (pure) quantum code [[n, k, t]]q, then its standard lengthening is

a pure quantum code [[n+ 1, k − 1, t+ 1]]q.

Proof. Put A0 = {0} ∪ A and let H be a generator matrix of Φ(B(A0)).

As dim(Φ(B(A0)) = 2 + dim(Φ(B(A))) we have that H has n − k + 2 rows

and n columns. As Φ(B({0})) is a complement of Φ(B(A)) in Φ(B(A0)) we
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can choose notation such that the n − k first rows of H are a generator

matrix of Φ(B(A)) and the two remaining rows are en1 and en2 , where e1 =

(1, 0), e2 = (0, 1). We append a (n + 1)−st coordinate ∞. The new ambient

space is V (2(n+1), q), with a symplectic scalar product such that coordinate

∞ corresponds to a hyperbolic plane. A generator matrix H ′ of an (n− k +

2)−dimensional code D is obtained by lengthening the rows of H as follows:

the n − k first rows of H are lengthened by (0, 0), the two last rows are

lengthened by (1, 0) = e1 and (0,−n) = −ne2, respectively. These last

rows are then orthogonal to each other. It is now easy to see that D is

self-orthogonal. The main points are that Φ(B(A)) is self-orthogonal and is

orthogonal to Φ(B({0})) (see Theorem 6). It remains to prove that D⊥ has

minimum distance ≥ t+1. Assume (v1, v2, . . . , vn, v∞) is a nonzero codeword

in D⊥ of weight ≤ t. If v∞ = (0, 0), then we obtain a nonzero relation between

t columns of H. This is impossible as C(A0) has minimum distance ≥ t by the

BCH-bound Proposition 1. If v∞ 6= 0, then restriction to the first n−k rows

shows that we have a nontrivial linear combination involving t − 1 columns

of a generator matrix of Φ(B(A)). This is another contradiction.

Continuing with our example we see that we can lengthen our quantum
code [[21, 6, 5]]2 and obtain a pure code [[22, 5, 6]]2.

An explicit example

It follows from Section 5 that our theory yields an efficient construction
for our quantum codes. The generator matrices and check matrices are es-
sentially canonical. We illustrate by working out the construction of the
quantum code [[22, 5, 6]]2 explicitly. We are in case q = 2, n = 21, r = 6, κ =
3, A = [1, 4]. We need to start from an explicit representation of the field
F = IF64. Choose a primitive element ε such that ε6 = ε+ 1. It is easy to see
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that X6 +X+ 1 is indeed an irreducible polynomial and that ε is a primitive
element. As we need the trace tr : F −→ IF2 and as the trace is constant
on cyclotomic cosets mod 63 it will be handy to have a table of cyclotomic
cosets mod 63 and the value of tr on each such coset.

cosets mod 63 value of trace
0 0

1,2,4,8,16,32 0
3,6,12,24,48,33 0
5,10,20,40,17,34 1
7,14,28,56,49,35 0

9,18,36 0
11,22,44,25,50,37 1
13,26,52,41,19,38 0
15,30,60,57,51,39 1

21,42 1
23,46,29,58,53,43 1

27,54,45 0
31,62,61,59,55,47 1

Observe that the values on the left hand side of the table are the exponents
of ε. The first row says tr(ε0) = tr(1) = 0, the second rows says that tr(ε1) =
tr(ε2) = · · · = 0.

We will describe the twisted quantum code [[21, 6, 5]]2 by a generator
matrix G of Φ(B(A)). The dimension of this code is dZ(1)(A) + dZ(3)(A) =
2 · 6 + 1 · 3 = 15, as Z(1) ∩ A is saturated and Z(3) ∩ A is unsaturated.
These cyclotomic cosets are of course mod 21. The generator matrix will
have size (15, 21), where Z(1) contributes 12 rows and Z(3) gives us 3 rows.
The entries of G will be written with the usual notation inherited from IF4 :

0←→ (0, 0), 1←→ (1, 1), ω ←→ (1, 0), ω ←→ (0, 1)

The generator of W is ε3. Index the columns by j = 0, 1, . . . , 20. The element
u ∈ W corresponding to column j is ε3j.

Start with the rows determined by Z(1). We need a basis α1, . . . , α6 of
F | IF2. A natural choice is α1 = 1, α2 = ε, . . . , α6 = ε5. The 6 first rows
zi, i = 1, . . . , 6 are determined by αi. The entry in row zi and column j is
(tr(εi−1+3j), 0). Observe that 0 and ω are the only entries occuring in the first
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six rows. The second block of six rows zi, i = 7, . . . , 12 is obtained from the
first block by the substitution ω ←→ ω.

We turn to the remaining 3 rows determined by Z(3). It is clear that the
trace vanishes on IF8, hence IF⊥8 = IF8. The elements α1, α2, α3 have to be
chosen as basis of a complement of IF8 in F. We use α1 = ε, α2 = ε2, α3 = ε5.
Further γ = ε9 ∈ IF8 \ IF2. The entries in row 12 + i and column j are then
(tr(αiε

9j), tr(αiε
9(j+1))), where i = 1, 2, 3. This describes matrix G. The effect

of standard lengthening is as follows: There is a new column∞. The rows of
G obtain entry 0 in the new column. Two new rows, constant ω and constant
ω are added. Here is the generator matrix of [[22, 5, 6]]2 :

i\j 0 to 6 7 to 13 14 to 20 ∞
1 0 0 0 0 0 ω 0 ω 0 0 ω 0 0 ω ω 0 0 ω 0 ω ω 0
2 0 0 0 ω 0 0 0 ω ω 0 ω ω ω ω ω ω 0 0 ω ω ω 0
3 0 ω 0 ω 0 ω ω ω 0 ω 0 0 0 0 ω ω ω ω 0 ω ω 0
4 0 0 0 0 ω 0 ω 0 0 ω 0 0 ω ω 0 0 ω 0 ω ω 0 0
5 0 0 ω 0 0 0 ω ω 0 ω ω ω ω ω ω 0 0 ω ω ω 0 0
6 ω 0 ω 0 ω ω ω 0 ω 0 0 0 0 ω ω ω ω 0 ω ω 0 0
7 0 0 0 0 0 ω 0 ω 0 0 ω 0 0 ω ω 0 0 ω 0 ω ω 0
8 0 0 0 ω 0 0 0 ω ω 0 ω ω ω ω ω ω 0 0 ω ω ω 0
9 0 ω 0 ω 0 ω ω ω 0 ω 0 0 0 0 ω ω ω ω 0 ω ω 0
10 0 0 0 0 ω 0 ω 0 0 ω 0 0 ω ω 0 0 ω 0 ω ω 0 0
11 0 0 ω 0 0 0 ω ω 0 ω ω ω ω ω ω 0 0 ω ω ω 0 0
12 ω 0 ω 0 ω ω ω 0 ω 0 0 0 0 ω ω ω ω 0 ω ω 0 0
13 ω ω 0 ω 1 1 ω ω ω 0 ω 1 1 ω ω ω 0 ω 1 1 ω 0
14 ω 1 1 ω ω ω 0 ω 1 1 ω ω ω 0 ω 1 1 ω ω ω 0 0
15 ω ω ω 0 ω 1 1 ω ω ω 0 ω 1 1 ω ω ω 0 ω 1 1 0
16 ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω
17 ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω

We have mentioned how the second block of rows is obtained from the
first block. Also, rows 4,5,6 are obtained from rows 1,2,3 by shifting. Rows
13,14,15 are periodic with a period of 7. In these rows, symbols 0 and ω are
always followed by 0 or ω, symbols 1 and ω are followed by 1 or ω.

Consider case q = 2, n = 31. Clearly r = κ = 5. Here are the cyclotomic
cosets in this case:
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cyclotomic cosets
0
1,2,4,8,16
3,6,12,24,17
5,10,20,9,18
7,14,28,25,19
11,22,13,26,21
15,30,29,27,23

Let A = [1, 5]. We obtain dim(C(A)) = 2 ·16+10 = 42. The orthogonality
condition is trivially satisfied. We obtain codes [[31, 11, 6]]2 and [[32, 10, 7]]2.

Here is our first infinite series of (lengthened) twisted quantum codes.

Theorem 9. For every q and every r ≥ 2 an application of Theorem 8 yields

a pure quantum code

[[qr, qr − (r + 2), 3]]q.

There is a twisted quantum code

[[q2 + 1, q2 − 3, 3]]q.

Proof. Consider case n = qr − 1, A = {1}. The dimension of C(A) is K =

2(n − r) + r = 2n − r, hence k = K − n = qr − (r + 1). As Z(1) 6= Z(−1)

clearly we have a self-orthogonal code. An application of Theorem 8 yields

the first part of the theorem. Let r = 4, n = q2 + 1, κ = 2, A = {1}. We get

a code of dimension K = 2(n − 4) + 4 = 2n − 4 and quantum dimension 4.

It is self-orthogonal by Theorem 6.

This generalizes [1],Theorem 10.
In [4] a lengthening technique is applied to the classical Reed-Muller codes

to derive a family of quantum codes with parameters

[[2r, 2r −
(
r

t

)
− 2

t−1∑
i=0

(
r

i

)
, 2t + 2t−1]]2.
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We observe that these parameters are not good at all in general. Application
of Theorem 8 in case n = 2r − 1, κ = r, A = [1, 2t + 2t−1 − 2] yields better
results in almost all cases. The generic choice κ = r is always possible. If r
is prime, then it is the only possible choice. We mention that choices κ < r
tend to give better parameters than κ = r. This is another source of possible
improvements.

Choose A = [1, 4]. We have {1, 2, 4} ⊂ Z(1), Z(3) 6= Z(1). Assume r > 3.
Then Z(1) and Z(3) have maximum length r, and Z(1) ∪ Z(3) is disjoint
from its negative. Self-orthogonality follows. We have K = 2(n− 2r) + r =
2n− 3r, k = K − n = n− 3r and obtain

[[2r − 1, 2r − 3r − 1, 5]]2 and [[2r, 2r − 3r − 2, 6]]2.

This is much better than the values from [4]. For larger t the gap widens.

Theorem 10. Let q = 2, n | 2r−1. Then [[n+1, n−r−1, 3]]2 exists. Assume

that either r odd or that n does not divide 2r/2 + 1. Then

[[n, n− 2r, 3]]2 and [[n+ 1, n− 2r − 1, 4]]2 exist.

Assume moreover that n > 3 and neither 3 nor -3 are in Z(1). Then

[[n, n− 2r− | Z(3) |, 5]]2 and [[n+ 1, n− 2r− | Z(3) | −1, 6]]2 exist.

Proof. The first cases correspond to κ = r and A = {1} or A = {1, 2}, the

last family is given by A = [1, 4], κ = |Z(3)|.

As examples for the last series in Theorem 10 we mention

[[46, 16, 6]]2, [[51, 27, 5]]2, [[52, 26, 6]]2, [[73, 46, 5]]2, [[74, 45, 6]]2, [[85, 61, 5]]2,

[[86, 60, 6]]2, [[93, 68, 5]]2, and [[94, 67, 6]]2.
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8 A general lengthening method

Theorem 11. Let Ci, i = 1, 2, . . . , a be q-linear q2-ary quantum codes of

length ni and dimension Ki. Let Ci, i < a have dual distance ≥ d and Ca
have dual distance ≥ min(d, na). For i < a let Di ⊂ Ci be a subcode of dual

distance ≥ d− 1 such that Ki+1 ≤ Ki − dim(Di), i = 1, 2, . . . , a.

We can construct a quantum code of length
∑

i ni, dimension K1 and dual

distance ≥ d, in other words

[[
∑
i

ni,
∑
i

ni −K1, d]]q.

Proof. By assumption we can find matrices Gi with entries in E = V (2, q)

such that Gi has Ki rows and ni columns and any d − 1 columns of Gi are

linearly independent. For i < a we have a submatrix Ei of Gi with dim(Di)

rows, such that any d− 2 columns of Ei are linearly independent. We define

matrix G as concatenation of the Gi, where Gi is complemented by K1−Ki

final 0-rows and submatrix Ei consists of the last nonzero rows. Clearly G

describes a self-orthogonal code of length
∑

i ni and dimension K1. Assume

some d− 1 columns are linearly dependent. Let i < a be minimal such that

section i of G contains one of the columns. Not all of these columns are

in this section. Consider the rows corresponding to matrix Ei. As Ei has

strength d− 2 and all columns of G belonging to segments j > i have entries

0 there, we obtain that the coefficients of the linear relation of the columns

in segment i all vanish. It follows that all of our columns with a nonzero

coefficient are in section a. If d − 1 ≥ a we obtain the usual contradiction.

If d − 1 < a, then the columns of the last section are linearly independent,

another contradiction.
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Theorem 11 of [1] can be described as an application of our Theorem 11
in case q = 2, d = 3. In fact we can use as ingrediences the codes [[2r, 2r −
r − 2, 3]]2 described in Section 7. Let us generalize this to the q-ary case.
Our codes [[qr, qr − (r + 2), 3]]q have dimension r + 2 and they contain by
construction the 2-dimensional repetition code (of dual distance 2). Let
r = 2u be even. As 4-dimensional member (Ca in the language of Theorem 11)
we can use the code [[q2+1, q2−3, 3]]q from Theorem 9. Applying Theorem 11
in this case r = 2u yields a quantum code of length qr + qr−2 + · · ·+ q2 + 1 =
(qr+2−1)/(q2−1). In case r = 2u+1 odd we proceed in the same way, using
members of our family all the way. The smallest member is [[q3, q3 − 5, 3]]q.
The length is qr + qr−2 + · · ·+ q3 = q3(qr−1 − 1)/(q2 − 1). We have seen the
following:

Theorem 12. There exist pure quantum codes

[[(qr+2 − 1)/(q2 − 1), (qr+2 − 1)/(q2 − 1)− (r + 2), 3]]q (r even) and

[[q3(qr−1 − 1)/(q2 − 1), q3(qr−1 − 1)/(q2 − 1)− (r + 2), 3]]q (r odd)

The first series in Theorem 12 (for r even) corresponds to the quantum
codes obtained from the IFq2−ary Simplex/Hamming codes (see Theorem 1).

9 Conclusion

We have developed the theory of twisted codes in the quadratic case. These
codes turned out to be a source for good quantum codes. We conclude with a
table of additional parameters of additive quaternary quantum codes, which
may be constructed from twisted codes, eventually via standard lengthening.
More material is to be found on our homepages [6].
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code parameters interval A κ
[[13, 1, 4]] [6,8] 2
[[21, 12, 3]] [2,3] 3
[[31, 6, 7]] [1,6] 5
[[32, 5, 8]] [1,6] 5
[[41, 21, 4]] [11,13] 2
[[43, 29, 4]] [13,15] 2
[[46, 6, 8]] [1,6] 3
[[45, 19, 5]] [3,6] 3
[[51, 19, 6]] [1,5] 2
[[52, 18, 7]] [1,5] 2
[[63, 39, 6]] [1,5] 2
[[64, 38, 7]] [1,5] 2
[[63, 33, 7]] [1,6] 2
[[64, 32, 8]] [1,6] 2
[[63, 27, 9]] [1,8] 3
[[64, 26, 10]] [1,8] 3
[[63, 24, 10]] [1,9] 3
[[64, 23, 11]] [1,9] 3
[[63, 18, 11]] [1,10] 3
[[64, 17, 12]] [1,10] 3
[[63, 12, 13]] [1,12] 3
[[64, 11, 14]] [1,12] 3
[[63, 48, 4]] [7,9] 3
[[63, 54, 3]] [8,9] 3
[[73, 55, 4]] [20,22] 3
[[86, 36, 10]] [1,8] 2
[[86, 28, 11]] [1,9] 2
[[85, 53, 7]] [23,28] 2
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code parameters interval A κ
[[85, 69, 4]] [26,28] 2
[[85, 33, 10]] [48,56] 2
[[85, 41, 9]] [49,56] 2
[[85, 49, 8]] [50,56] 2
[[92, 18, 12]] [1,10] 2
[[94, 52, 8]] [1,6] 2
[[93, 43, 9]] [1,8] 2
[[94, 42, 10]] [1,8] 2
[[94, 57, 7]] [1,5] 5
[[93, 38, 10]] [1,9] 5
[[94, 37, 11]] [1,9] 5
[[94, 27, 12]] [1,10] 5
[[106, 68, 6]] [1,4] 2
[[106, 62, 7]] [1,5] 2
[[105, 47, 9]] [1,8] 2
[[106, 46, 10]] [1,8] 2
[[105, 71, 5]] [4,7] 2
[[105, 83, 4]] [5,7] 2
[[105, 95, 3]] [14,15] 2
[[113, 85, 4]] [73,75] 2
[[118, 80, 6]] [1,4] 2
[[118, 68, 7]] [1,5] 2
[[118, 56, 8]] [1,6] 2
[[117, 63, 7]] [11,16] 3
[[117, 93, 4]] [48,50] 3
[[117, 105, 3]] [49,50] 3
[[117, 75, 6]] [64,68] 3
[[117, 87, 5]] [65,68] 3
[[127, 99, 6]] [1,5] 7
[[128, 98, 7]] [1,5] 7
[[127, 92, 7]] [1,6] 7
[[128, 91, 8]] [1,6] 7
[[127, 85, 9]] [1,8] 7
[[128, 84, 10]] [1,8] 7
[[127, 78, 10]] [1,9] 7
[[128, 77, 11]] [1,9] 7
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code parameters interval A κ
[[127, 71, 11]] [1,10] 7
[[128, 70, 12]] [1,10] 7
[[127, 64, 13]] [1,12] 7
[[128, 63, 14]] [1,12] 7
[[127, 57, 14]] [1,13] 7
[[128, 56, 15]] [1,13] 7
[[127, 50, 15]] [1,14] 7
[[128, 49, 16]] [1,14] 7
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