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Abstract

We introduce several recursive constructions for caps in projective
spaces. These generalize the known constructions in an essential way
and lead to new large caps in many cases. Among our results we
mention the construction of {(q + 1)(q2 + 3)}−caps in PG(5, q), of
{q4 + 2q2}-caps in PG(6, q) and of q2(q2 + 1)2-caps in PG(9, q).
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1 Introduction

A cap in PG(k − 1, q) is a set of points no three of which are collinear. If
we write the n points as columns of a matrix we obtain a (k, n)-matrix such
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that every set of three columns is linearly independent, hence the generator
matrix of a linear orthogonal array of strength 3. This is a check matrix of
a linear code with minimum distance ≥ 4. We arrive at the following:

Theorem 1 The following are equivalent:

• A set of n points in PG(k − 1, q), which form a cap.

• A q-ary linear orthogonal array of length n, dimension k and strength
3.

• A q-ary linear code [n, n− k, 4]q.

Denote by m2(k−1, q) the maximum cardinality of a cap in PG(k−1, q).
In the binary case this is a trivial problem. In fact, choosing all nonzero
(k − 1)-tuples as columns we obtain a binary (k − 1, 2k−1 − 1)-matrix of
strength 2, where the number of columns is clearly maximal. The dual is
a binary code [2k−1 − 1, 2k−1 − k, 3]2. Addition of a parity-check bit yields
[2k−1, 2k−1 − k, 4]2. We conclude

m2(k − 1, 2) = 2k−1.

We can assume q > 2 in the sequel. For small dimensions there is no problem.
Trivially m2(1, q) = 2. It is an easy exercise to show that the solutions of
the homogeneous equation Z2 = XY form a set of q + 1 points (a conic) in
PG(2, q) no three of which are collinear. (q + 1)-caps in PG(2, q) are known
as ovals, (q + 2)-caps as hyperovals. If q is odd then hyperovals do not
exist. If q is a power of 2, then each oval may be embedded in a hyperoval.
It follows

m2(2, q) =
{

q + 1 if q is odd
q + 2 if q is even.

In projective dimension 3 the situation is just as clear:

m2(3, q) = q2 + 1 if q > 2.

(q2 + 1)-caps in PG(3, q) are known as ovoids. Just as in dimension 2 they
may be constructed as quadrics. We remark that there is a family of ovoids
in PG(3, 22f+1), f ≥ 1, the Tits ovoids, which are not quadrics. They are
closely related to the Suzuki groups. The smallest member of this family was
constructed by Segre [8], the construction in general is due to Tits [9].
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2 The known recursive constructions

Only two general recursive constructions for large caps appear to be known.
First of all there is Segre’s construction from [7], which is based on ovoids
and yields the following:

Theorem 2 (Segre) m2(l + 3, q) ≥ q2m2(l, q) + 1,

By induction the following explicit bound is obtained:

m2(3l, q) ≥ (q2l+2 − 1/(q2 − 1),

as well as analogous bounds on m2(3l + 1, q) and m2(3l + 2, q).
For the state of the art concerning bounds on these numbers we refer to [4].

The second general recursive construction is due to Mukhopadhyay [5]:

Theorem 3 (Mukhopadhyay) Assume the following exist:

1. An n-cap in AG(k, q), and

2. an m-cap in PG(l, q).

Then there is an mn-cap in PG(k + l, q).

Mukhopadhyay applies this Theorem in cases n = 1, 2, 3. In case k = 1
this yields in particular the following doubling process:

Theorem 4 (doubling) m2(l + 1, q) ≥ 2 ·m2(l, q).

Case k = 2 yields

m2(l + 2, q) ≥
{

(q + 1) ·m2(l, q) if q is odd
(q + 2) ·m2(l, q) if q is even.

In case k = 3 a slight strengthening leads him to another proof of Segre’s
Theorem 2.
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3 A coding-theoretic explanation of the re-

cursive constructions

We start by giving coding-theoretic proofs for some of the recursive con-
structions mentioned in Section 2. The following is known as the (u, u + v)-
construction in the coding-theoretic literature.

Lemma 1 ((u, u + v)-construction) Let Ci be codes [n, ki, di]q, i = 1, 2.
Define a code C of length 2n whose codewords are parametrized by pairs
(u, v), where u ∈ C1, v ∈ C2. The codeword of C parametrized by (u, v) is
(u|u + v). Then C is a code

[2n, k1 + k2, min(d2, 2d1)]

If C2 has parameters [n, n−k, 4] we can choose C1 to be the all-even code
[n, n−1, 2] and obtain a code [2n, 2n−(k+1), 4]. In geometrical language this
is the doubling theorem 4. In fact, it yields a little more: as q > 2 the all-even
code [n, n − 1, 2] contains a vector of weight n. This shows that the code C
constructed via Lemma 1 also has maximum weight 2n. Geometrically this
means that there is a hyperplane, which avoids our point set. We obtain a
point set contained in the affine geometry AG(k, q).

Theorem 5 If there is an n-cap in PG(l, q), then there is a 2n-cap in AG(l+
1, q).

As an example we obtain a 20-cap in AG(4, 3). This is known as the affine
Pellegrino cap (see [6]). We can use Theorem 5 together with Theorem 3
and obtain

Theorem 6 m2(k + l + 1, q) ≥ 2 ·m2(k, q) ·m2(l, q).

It is known that m2(5, 3) = 56. Application of Theorem 6 to the 56-cap
in PG(5, 3) (the Hill cap, see [3]) yields m2(l + 6, 3) ≥ 112 · m2(l, 3), in
particular m2(9, 3) ≥ 1120 and m2(11, 3) ≥ 6272.
Theorem 3 can be proved by the basic coding-theoretic method of concate-
nation, which we use in the following form (see [2]):
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Definition 1 (Blokh-Zyablov concatenation) Let Ci be a linear Qi-ary
code [N, Ki, Di], i = 1, 2, . . . , s (the outer codes), where Qi = qhi . Let fur-
ther E1 ⊂ . . . ⊂ Es be a chain of linear q-ary codes [n, ki, di] (the inner codes)
such that the codimensions satisfy ki − ki−1 = hi. Put h1 = k1. Choose IFq-
isomorphisms αi : IFQi

−→ Ui ⊆ IF n
q , where Ui is a complement of Ei−1 in

Ei. The words of the concatenated code

Concat(C1, . . . , Cs; E1 ⊂ . . . ⊂ Es)

are in bijection with the s-tuples (u1, . . . , us), where ui ∈ Ci. The word of the
concatenated code corresponding to (u1, u2, . . . , us) is α1(u1) + . . . + αs(us),
where the αi are defined coordinatewise.

Lemma 2 The concatenated code Concat(C1, . . . , Cs; E1 ⊂ . . . ⊂ Es) of Defi-
nition 1 is a linear q-ary code with parameters [nN,

∑s
i=1 hiKi, mini{diDi}].

Proof: The length is obvious. The mapping from the s-tuples of words of
the outer codes to the words of the concatenated code is clearly IFq-linear.
By construction the kernel of the mapping is trivial. The statement concern-
ing the dimension follows. Consider a nonzero tuple (u1, u2, . . . , us), where
ui ∈ Ci. Choose i maximal such that ui 6= 0. Then αi(ui) has weight ≥ diDi.
The addition of vectors αj(uj), j < i does not destroy this property. The
reason is that the components of αj(uj) are contained in the smaller code Ej,
which is contained in Ei. Here we use the fact that the Ei form a chain, and
the choice of the Ui.

Consider a chain E1 ⊂ E2 ⊂ E3 ⊂ of q-ary codes with parameters

[n, n− (k + 1), 4] ⊂ [n, n− 1, 2] ⊂ [n, n, 1].

This chain will exist if and only if a code E1 with the given parameters exists,
whose dual contains a word of weight n. Geometrically this is equivalent to
an n-cap in the affine geometry AG(k, q). We have then h1 = n − (k +
1), h2 = k, h3 = 1. We use codes C1 = [m, m, 1]Q1 , C2 = [m,m − 1, 2]qk

and C3 = [m, m − (l + 1), 4]q. Observe that C1, C2 always exist, independent
of the choice of m and l. Code C3 is equivalent to an m-cap in PG(l, q).
Concatenation yields a q-ary code with length nm, dimension m[n − (k +
1)] + (m− 1)k + m− (l + 1) = mn− (k + l + 1) and minimum weight 4. We
have proved the following:
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Theorem 7 Assume there exists a q-ary code [n, n− (k + 1), 4] whose dual
has maximum weight n, and a q-ary code [m, m−(l+1), 4]. Then there exists
a code

[nm, nm− (k + l + 1), 4]q.

This is precisely Theorem 3, stated in terms of coding theory. Case
k = 1, n = 2 yields Theorem 4. The special case leading to a code [102, 96, 4]4
has been given by L.Tolhuizen in his Ph.D. thesis [10].
As ovoids are not affine we cannot apply Theorem 3 to cover a gap of three
in the dimension. In particular we have not given a satisfactory explanation
of Theorem 2 yet. It is clear that a more general construction must exist,
which covers the case when none of the two caps is contained in the affine
geometry. This will be done in the following section.

4 New recursive constructions

Theorem 8 Assume the following exist:

1. An n-cap K1 ⊂ PG(k, q) and a hyperplane H of PG(k, q) such that
|K1 \H| = w, and

2. an m-cap in PG(l, q).

Then there is an {wm + (n− w)}-cap in PG(k + l, q).

Proof: We use the language of linear orthogonal arrays. We say that a
matrix has strength t if any set of t of its columns is linearly independent.
The assumptions of the Theorem guarantee the existence of the following
q-ary matrices:

• A (k + 1, n)-matrix A of strength three, whose first row has w entries
= 1 in the first columns, whose remaining entries are 0, and

• an (l + 1, m)-matrix B of strength 3.

We have to construct a (k + l + 1, wm + n−w)-matrix of strength three.
Let a vary over the first w columns of A, b over the columns of B and α over
the last n−w columns of A. Denote by a′, α′ the k-tuples arising by omitting
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the leading entry in column a, α, respectively. The columns of our matrix
are defined as follows:

s(a, b) = (b, a′) and s(α) = (0, α′),

where a, b, α vary as described above. Observe that the coordinate segments
have lengths l + 1 and k, respectively. We have to show that any three of
these columns are linearly independent. It is clear that there is no 0-column
and that no two of our columns are scalar multiples of each other. Assume
some three columns are linearly dependent. We know that the coefficients
of the dependency are nonzero. As A has strength three, at least one of the
columns must have type s(a, b). The first segment of coordinates shows that
at least two columns must have this type. Assume one of the columns does
have type s(α). The linear dependency looks as follows:

λ1(b1, a
′
1) + λ2(b2, a

′
2) + λ3(0, α

′) = 0.

As B has strength 3 we conclude b1 = b2, λ1 + λ2 = 0. It follows 0 =
λ1a

′
1 + λ2a

′
2 + λ3α

′ = λ1a1 + λ2a2 + λ3α, a contradiction. We conclude
that all three columns must have type s(a, b). The linear dependency looks
as follows:

∑3
i=1 λi(bi, a

′
i) = 0. The first coordinate segment shows b1 = b2 = b3

and
∑3

i=1 λi = 0. The second segment now shows
∑3

i=1 λiai = 0, hence
a1 = a2 = a3, contradiction.

Theorem 8 is a common generalization of Theorems 2 and Theorem 3.
In fact, Theorem 2 is obtained as an application of Theorem 8 to ovoids.
Theorem 3 is obtained in the special case n = w. It is observed in [5] that
Theorem 3, when applied to two affine caps (case n = w,m = v) yields
an affine cap. Our construction displays this feature, too (the first row of
the resulting matrix has nonzero entries). Moreover our construction has
another interesting property in this direction. Assume i rows of A have all
entries nonzero (equivalently: there are i hyperplanes in general position,
which avoid cap K1). Then the resulting matrix still has i− 1 rows with all
entries nonzero. We obtain the following:

Corollary 1 Assume the following exist:

1. An n-cap in AG(k, q), which is avoided by i ≥ 2 hyperplanes in general
position, and
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2. an m-cap in PG(l, q).

Then there is an mn-cap in AG(k + l, q), which is avoided by some i− 1
hyperplanes in general position.

This applies in particular in case k = 2. As ovals and hyperovals certainly
possess triangles of exterior lines we have i = 3 (equivalently: a generator
matrix of the (hyper)oval can be found, all of whose entries are nonzero).
Repeated application of Corollary 1 yields the following:

Theorem 9 The following caps exist, for all dimensions l, k, m :

• an {m2(2, q) ·m2(l, q)}−cap in AG(l + 2, q),

• an {m2(2, q) ·m2(l, q) ·m2(k, q)}−cap in AG(l + k + 2, q), and

• an {m2(2, q) ·m2(l, q) ·m2(k, q) ·m2(m, q)}−cap in PG(l+k+m+2, q).

Among the applications of Theorem 9 we mention a 102-cap in AG(5, 4)
and a 156-cap in AG(5, 5), both of which are avoided by two hyperplanes.
What is a little unsatisfactory about Theorem 8 is that it does not use its
ingredients in a symmetrical fashion. We symmetrize the approach. Let the
following be given:

• A (k + 1, n)-matrix A of strength three, whose first row has w entries
= 1 in the first columns, whose remaining entries are 0, and

• an (l + 1, m)-matrix B of strength 3, whose first row has v entries = 1
in the first columns, whose remaining entries are 0.

Denote by a one of the w first columns of A, by α one of the n− w last
columns. Analogously denote by b one of the v first columns of B, by β
one of the m − v of its last columns. Further a′, α′, b′, β′ are obtained by
omitting the first entry (0 or 1). With this terminology the columns used in
the proof of Theorem 8 are (1, b′, a′)t, (0, β′, a′)t and (0, 0, α′)t. This exhibits
the asymmetrical nature of the construction. Let us consider instead the
columns of the following types:

(1, b′, a′)t (type I) , (0, β′, a′)t (type II) , (0, b′, α′)t (type III) .
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Observe that the coordinate segments have lengths 1,l and k, respectively.
Theorem 8 shows that the columns of types I and II yield a matrix of strength
3. By symmetry the same is true of the columns of types I and III. Let the
matrix M consist of all the columns of types I,II and III.
Our first aim is a recursive construction making more efficient use of ovoids.
More in general let us consider the case w = n− 1, v = m− 1 (equivalently:
each of our caps, K1 ⊂ PG(k, q) and K2 ⊂ PG(l, q) possesses a tangent
hyperplane). We claim that M has strength three. In order to simplify the
proof we choose notation such that the first column of A is (1, 0, 0, . . . , 0),
likewise for the first column of B. This can be achieved by adding suitable
multiples of the first row to the remaining rows.
We claim that column α′ is not a multiple of any column a′. This is certainly
true when a′ is the zero column. If a′ 6= 0 is a multiple of α′, then we obtain a
multiple of the first column as a linear combination of a and α, contradicting
the fact that A has strength three.
We check at first that M has strength ≥ 2. It suffices to prove that no
column of type II is a scalar multiple of a column of type III. Assume λ ·
(0, β′, a′) = µ ·(0, b′, α′). The last coordinate segment shows that λ ·a′ = µ ·α′,
a contradiction. It is now just as easy to show that M has strength 3. Assume
three columns are linearly dependent. We know that the coefficients of the
linear relation must be nonzero. We also know that a column of type II and a
column of type III must be involved. If the third column has type I, then the
first coordinate yields a contradiction. Because of symmetry we can assume
that two columns of type III and one of type II are involved. The linear
dependency looks as follows:

λ1(0, b
′
1, α

′) + λ2(0, b
′
2, α

′) + λ3(0, β
′, a′) = 0.

The last segment shows (λ1 + λ2)α
′ = −λ3a

′. By what we have shown above
this forces λ1 + λ2 = 0. This together with the middle segment shows λ1b1 +
λ2b2 + λ3β = 0, a contradiction to the fact that B has strength 3. We have
proved the following:

Theorem 10 Assume the following exist:

1. An n-cap K1 ⊂ PG(k, q) possessing a tangent hyperplane, and

2. an m-cap K2 ⊂ PG(l, q) possessing a tangent hyperplane.
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Then there is an {nm− 1}-cap in PG(k + l, q).

This Theorem certainly applies when K1 and K2 both are ovoids. We
obtain the following:

Theorem 11 m2(6, q) ≥ q4 + 2q2.

In particular m2(6, 4) ≥ 288, m2(6, 5) ≥ 675. We can go a step further.
Let K be the cap constructed from ovoids K1 and K2 via Theorem 11. Let
the second coordinate correspond to another tangent hyperplane of K2. This
yields a hyperplane intersecting K in precisely q2 + 1 points. An application
of Theorem 8 with an ovoid as second ingredient yields the following:

Theorem 12 m2(9, q) ≥ q2(q2 + 1)2.

5 A product construction

Next we describe a general and very formal product construction.

Definition 2 • Let F : PG(u − 1, q) ∪ {0} −→ P(IF v
q ) be a mapping.

Write F (x) for F (< x >). Denote by M(F ) the family of all vectors
(x, y) ∈ IF u+v

q , where y ∈ F (x). Here x varies over a fixed family of
representatives of the 1-dimensional subspaces of IF u

q and 0. We may
also consider M(F ) as a matrix, where the order of the columns is
irrelevant.

• Let F : PG(u− 1, q) ∪ {0} −→ P(IF v
q ) and F : PG(u− 1, q) ∪ {0} −→

P(IF v′
q ) as above be given. Define (F ⊗ G) : PG(u − 1, q) ∪ {0} −→

P(IF v+v′
q ) by

(F ⊗G)(x) = {(y, y′) | y ∈ F (x), y′ ∈ G(x)}.

The same set of representatives x has to be used for F, G and F ⊗G.

Here is the promised general product construction:

Theorem 13 Let F : IF u
q −→ IF v

q and G : IF u
q −→ IF v′

q . If M(F ) and
M(G) both have strength 3 (equivalently: are caps in PG(u + v − 1, q) and
PG(u + v′ − 1, q), respectively), then M(F ⊗ G) has strength 3 and hence
represents a cap in PG(u + v + v′ − 1, q).
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The proof of Theorem 13 is trivial. We make use of the following descrip-
tion of conic sections in PG(2, q) and elliptic quadrics in PG(3, q), which has
been given in [1]:

Proposition 1 Let q be a prime power. Consider IFq and its quadratic ex-
tension IFq2 . Fix an element a ∈ IF ∗

q .

1. The set of columns (1, b)t, where b ∈ IFq2 varies over the elements
satisfying bq+1 = a, has strength 3 (equivalently: this describes an oval
in the projective plane of order q).

2. The columns e2 = (0 : 1 : 0 : 0)t and (1 : a · uq+1 : u)t, where u varies
over IFq2 , form an ovoid in PG(3, q).

We see that the ovoid given in Proposition 1 may be described in the
language of Definition 2 by a function F : PG(1, q) ∪ {0} −→ P(IF 2

q ), where
F (1, 0) = F (0, 1) = {(0, 0)} and |F (x)| = q+1 for all x = (1, α), 0 6= α ∈ IFq.
Direct application of Theorem 13 to two copies of this ovoid yields a cap in
PG(5, q) of size 1 + 1 + (q − 1)(q + 1)2. We will refine this construction as
follows:
Consider three types of points in PG(5, q) : type I consists of all (x, y, z),
where x = (1, α) as above and yq+1 = zq+1 = α. Type II consists of all 6-
tuples (x′, 0, ζ), where x′ = (1, 0) or x′ = (0, 1) and ζq+1 = 1. Type III consists
of all columns (x′, ρ, 0), with x′ as above and ρq+1 = α0. Here α0 ∈ IFq \{0, 1}
is fixed. This defines a set of (q − 1)(q + 1)2 + 4(q + 1) = (q + 1)(q2 + 3)
points in PG(5, q). We claim that they form a cap.
It follows from Theorem 13 that the points of type I form a cap. Proposition 1
shows that the same is true of the points of type II and of those of type
III. It is also clear that no two of our vectors are scalar multiples of each
other. Assume there is a nontrivial linear combination involving three of
our columns. The middle set of coordinates shows that at most one of them
can have type II. Likewise at most one can have type III. It follows that at
least one point of type I has to be involved. Assume two points of type I
are involved. If the third point has type II, then the first two coordinate
sets yield a contradiction. If the third point has type III, then the first and
the last set of coordinates taken together yield a contradiction. We conclude
that the only critical case is when one column of each type is involved. The
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linear combination looks as follows:

λ1 · (x1, y1, z1) + λ2 · (a′, 0, ζ) + λ3 · (b′, ρ, 0) = 0.

Here x1 = (1, α) ∈ IF 2
q and yq+1

1 = zq+1
1 = α. The last coordinate section

shows λ1z1 = −λ2ζ, the middle section shows λ1y1 = −λ3ρ. Consider the
first section. It is impossible that a′ = b′. We have to consider two cases:
Assume a′ = (1, 0), b′ = (0, 1). Then λ2 = −λ1, λ3 = −λ1α. Together with
the equations above we get z1 = ζ, y1 = αρ. Raising to the (q + 1)th power
we obtain α = 1 and α = α2α0, hence α0 = 1, contradiction.
The second case is a′ = (0, 1), b′ = (1, 0). Then λ3 = −λ1, λ2 = −λ1α. We
obtain y1 = ρ, z1 = αζ. Raising to the (q + 1)th power yields α = α0 and
α = α2. We obtain the contradiction α0 = α = 1. We have proved the
following:

Theorem 14 There is a {(q + 1)(q2 + 3)}−cap in PG(5, q).

Moreover we have given an effective description of such a cap. In partic-
ular we obtain m2(5, 5) ≥ 168.
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