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1. Introduction

APN functions (see Definition 1) have become a quite popular area of research and especially quadratic APN
functions have links to various other mathematical areas. One link is to geometry, namely dimensional dual
hyperovals (see Definition 2). Quadratic APN functions are equivalent to certain subspaces of the alternating
bilinear forms, and most examples of dual hyperoval are, or can be, constructed from certain subspaces of the
bilinear forms.

As consequence different related publications use substantially different notation. The present manuscript is
based on the authors efforts to provide an explicit translation of the notation found in several papers on APN
functions and dual hyperovals by Nakagawa, Taniguchi and Yoshiara, into his own notation and back.

The focus of this manuscript are the representations. An other important point, the question of equivalence
is not touched. We refer to [14] for the characterization of the dual hyperovals that arise from quadratic APN
functions via the construction as described in Proposition 6, for the correspondence of their mutual equivalence
classes as well as for an explicit construction of the APN function, given an ”APN-dual hyperoval”.

Furthermore we restrict ourselves to the binary case, although some results hold also in more generality. Firstly
as most results on APN functions are only for this case, secondly as the notation often gets substantially less
complicated. For more extensive references, overviews over actual or more general results, open problems and
motivations we refer to some recent overview articles [8, 9, 16,22].

This manuscript is organized as follows: In the next section APN functions are introduced and several conditions
for being quadratic are given. Section 3 deals with several ways of representing (alternating) bilinear forms as
well as with representations of subspaces of this forms. Section 4 gives some characterizations of APN functions
in terms of these subspaces. In Section 5 dimensional dual hyperovals will be introduced and characterized in
terms of (alternating) bilinear forms. This section concludes with an alternative proof of Taniguchi’s result [21,
Theorem 11]. In the Appendix the trace representation of vector spaces of (alternating) bilinear forms will be
discussed and the alternating subspaces, in this representation, coming from APN functions are treated in detail.

2. Quadratic APN functions

Definition 1. Let Fp be the finite field with p elements, p prime. A function f : Fmp 7→ Fnp which satisfies

∀(a ∈ Fmp \ {0})∀(b ∈ Fnp ) : |{x ∈ Fmp | f(x+ a)− f(x) = b}| ≤ d

with d = 1, is called perfect nonlinear (PN) or planar. The function f is called almost perfect nonlinear
(APN) if it satisfies the equation with d = 2.

PN functions do not exist in even characteristic. Due to the existence of PN functions in odd characteristic,
APN functions are mostly only studied in characteristic 2 and the majority of papers on APN functions only deal
with the (extremal) case m = n. However there exist also some results in an even more general setting, obtained
by replacing the vector spaces in Definition 1 by arbitrary abelian groups (see e.g. [10, 18]).

A function f : Fmp → Fnp can be represented by n polynomials fi in Fp[X1, . . . , Xm] (also called boolean
functions, in the case p = 2). What is referred as (algebraic) degree of an APN function is maximum
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among the algebraic degrees d◦(fi) of the corresponding polynomials in m variables, i.e. the maximal number of
variables, in a monomial with non vanishing coefficient, of the algebraic normal form of one of the fi.

Quadratic APN functions are APN functions of degree 2. We will restrict us to quadratic APN functions.

If n = m the same mapping considered as f : Fpm → Fpm can be represented as an univariate polynomial
f ∈ Fpm [X].

Let the p-weight of an integer be the sum of its coefficients in its p-adic representation, i.e:

wp(

l∑
i=0

aip
i) :=

l∑
i=0

ai ∈ Z with 0 ≤ ai < p

The p-weight of a univariate polynomial is defined as

wp(

l∑
i=0

uiX
i) := max{wp(i)| ui 6= 0}

The p-weight of the univariate polynomial equals the algebraic degree of the same map written as multivariate
polynomial. This can be found e.g. in [9, Section 1.1], for p = 2, in more detail.

Univariate polynomials of p-weight 1 are called linearized polynomials, these are all Fp-linear maps.

The (additive) derivate in (in direction a 6= 0) Daf is defined as

Daf(x) = f(x+ a)− f(x)

APN functions are defined by properties of their derivate (Definition 1). The derivate is not symmetric in x and
a, we will define a symmetric version:

δyf(x) := f(x+ y)− f(x)− f(y)− f(0)

Direct verification shows that

δxk . . . δx2f(x1) =
∑

I⊆{1,...,k}

(−1)k−|I|f(
∑
i∈I

xi).

For constant a the derivate Da(f) and δaf differ only by a constant. Substituting Daf by δaf in Definition 1
therefore will lead to equivalent definitions.

In the following we will always assume that p = 2.

Proposition 1. The following characterization of a quadratic function are equivalent:

• f has algebraic degree d◦(f) = 2.

• For n = m: f has 2-weight wp(f) = 2.

• For all a 6= 0 Daf is F2-linear (↔ additive ↔ d◦(Daf) ≤ 1)

• Bf (x, y) := δyf(x) = f(x+ y) + f(x) + f(y) + f(0) is an alternating bilinear function.

• δzδyf(x) = f(x+ y + z) + f(x+ y) + f(y + z) + f(z + x) + f(x) + f(y) + f(z) + f(0) is constant zero.

Proof. The argumentation relays on the (unproven) property that for a non-constant function f , the algebraic
degree of δyf(x), viewed as function in x, is smaller than the algebraic degree of f and is (exactly) d◦f − 1, if
d◦f > 1. The verification of this remark is straight forward but lengthly and therefore omitted.

Direct verification shows that Bf (x, y) is symmetric and Bf (x, x) = 0.
Assume f is quadratic. The above remark states that Bf (x, y) is linear as function in x. By symmetry it is

bilinear. δzδyf(x) is a constant (as derivate of a linear function). Choose x = y = z = 0. This show that this
constant is zero.

Now assume that the algebraic degree of f is larger than 2. By the remark we have that Bf (x, y) is not linear
in x and δzδyf(x) not constant.
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3. On the vector space of (alternating) bilinear forms

3.1. Bilinear forms

We now look on different (unique) representations for a bilinear form. A bilinear form is a map

b(x, y) : Fl2 × Fm2 7→ F2 for which b(x+ x′, y) = b(x, y) + b(x′, y) and b(x, y + y′) = b(x, y) + b(x, y′).

In case l = m, a bilinear form b(x, y) is called alternating if additionally, for all x ∈ Fm2 , b(x, x) = 0 (this implies
that b(x, y) = b(y, x)).

Choose some basis e1, . . . , eu of Fu2 and write an x ∈ Fu2 as x =
∑u
i=1 xiei, xi ∈ F2.

3.1.1. The matrix representation.

The perhaps most basic representation of a bilinear form is by a matrix M ∈ Fl2 × Fm2 .

b(x, y) = xtMy =

l∑
i=1

m∑
j=1

ximi,jyj , where mi,j = b(ei, ej) ∈ F2 (1)

An alternating form (l = m) is given by a symmetric matrix (mi,j = mj,i) with main diagonal zero (mi,i = 0).

3.1.2. Representation using the tensor product, Variant 1

Identify the (x, y) ∈ Fl2 × Fm2 , with the tensor product (x⊗ y) :=
∑
i,j xiyj(ei ⊗ ej) ∈ Fl2 ⊗ Fm2 . Any bilinear form

can be uniquely written using a linear map γ : Fn2 ⊗Fn2 → F2 (this is the so called universal property of the tensor
product).

b(x, y) = (x⊗ y)γ =
∑
i,j

xiyj(ei ⊗ ej)γ =
∑
i,j

xiyjmi,j , where mi,j = (ei ⊗ ej)γ = b(ei, ej) ∈ F2

By the same reasoning an alternating bilinear form can be given through a linear map γ : Fm2 ∧ Fm2 → F2. The
vector space Fm2 ∧Fm2 can be viewed as the subspace of Fm2 ⊗Fm2 generated by the elements (ei⊗ ej) + (ej ⊗ ei) =:
(ei ∧ ej). Observe (x ∧ y) = 0 and (x ∧ y) = (y ∧ x). We get:

b(x, y) = (x ∧ y)γ =
∑
i<j

(xiyj + xjyi)(ei ∧ ej)γ =
∑
i,j

(xiyj + xjyi)mi,j , where mi,j = (ei ∧ ej)γ = b(ei, ej) ∈ F2

3.1.3. Representation using the tensor product, Variant 2

Observing that the vector space of all bilinear form Fl2 × Fm2 → F2 has the same dimension over F2 as Fl2 ⊗ Fm2 , a
bilinear form can be identified with an element (or equivalently a 1-dimensional subspace) of Fl2 ⊗ Fm2 by fixing a
vector space isomorphism. We will use:∑

i,j

ui,j(ei ⊗ ej)↔ b(x, y) =
∑
i,j

xiyjui,j .

Proceeding analogously for alternating bilinear forms gives:∑
i<j

ui,j(ei ∧ ej)↔ b(x, y) =
∑
i<j

(xiyj + xjyi)ui,j .

Then there is a nice correspondence between Variant 1 and Variant 2. An element
∑
i,j ui,j(ei⊗ej) corresponds

to the map γ : (ei⊗ej) 7→ ui,j . And every linear map γ : Fl2⊗Fm2 → F2 defines the element
∑
i,j(ei⊗ej)

γ(ei⊗ej).
The same bilinear form is obtained if we apply the image under this corespondents in the respective variant.

For alternating bilinear forms we proceed analogously.

3.1.4. Representation as polynomial in xi, yi.

Any function b(x, y) : Fl2 × Fm2 7→ F2 can be written as polynomial in F2[x1, . . . , xl, y1, . . . , ym]. The function is
bilinear, if its algebraic degree with respect to the variables x1, . . . , xl, as well as with respect to the variables
y1, . . . , ym is one. I.e. (again) we have that

b(x, y) =
∑
i,j

mi,jxiyj , where mi,j = b(ei, ej) ∈ F2

b(x, y) is an alternating form if mi,j = mj,i and mi,i = 0. This is just the matrix representation under a different
point of view.

3



3.1.5. The trace representation

Let l = m. Consider x, y now as elements of the field F2m . The (F2)-bilinear form b(x, y) : F2m × F2m 7→ F2 can
be uniquely given in the form

b(x, y) = tr(l(x)y) with l(x) =

m−1∑
k=0

αkx
2k

(2)

This representation is usually dedicated to Delsarte and Goethals [12]. It will be refered in the following as the
trace representation of a bilinear form.

We also identify b(x, y) with the element (α0, . . . , αm−1) ∈ (F2m)m which defines the linearized polynomial l.

For alternating bilinear forms, the same representation as in Equation 2 is obtained, only the linearized poly-
nomial l is of special form:

α0 = 0, αk = α2k

m−k, Especially if m = 2r : αr = α2r

r , i.e. αr ∈ F2r

So the trace representation of an alternating form is determined by the element

(α1, . . . αr) ∈

{
(F2m)r−1 × F2r if m = 2r

(F2m)r if m = 2r + 1

Details on the trace representation, and explicit conversions to the other representations have been transferred
to the Appendix A, as they need some room.

3.2. Vector spaces of bilinear forms

3.2.1. Basic definitions

The bilinear forms b(x, y) : Fl2 × Fm2 → F2 form a lm-dimensional vector space which will be denoted as B(x, y).
Define a scalar product:

〈, 〉 : B(x, y)× B(x, y)→ F2, 〈
∑
i,j

mi,jxiyj ,
∑
i,j

m′i,jxiyj〉 :=
∑
i,j

mi,jm
′
i,j

The alternating bilinear forms b(x, y) : Fm2 × Fm2 → F2 form a
(
m
2

)
-dimensional vector space which will be

denoted as A(x, y). We define a scalar product on A(x, y):

〈, 〉a : A(x, y)×A(x, y)→ F2, 〈
∑
i<j

mi,j(xiyj ,+xjyi),
∑
i<j

m′i,j(xiyj ,+xjyi)〉a :=
∑
i<j

mi,jm
′
i,j

Observe 〈, 〉a is not the restriction of 〈, 〉 on A viewed as subspace of B. An adapted scalar product for the trace
representation is defined in Appendix A.

For a subspace B(x, y) ⊆ B(x, y) (resp B(x, y) ⊆ A(x, y)) define the dual subspace B⊥(x, y) as

B⊥(x, y) := {b′(x, y) ∈ B(x, y)| ∀b ∈ B : 〈b′(x, y), b(x, y)〉 = 0} ⊆ B
B⊥(x, y) := {b′(x, y) ∈ A(x, y)| ∀b ∈ B : 〈b′(x, y), b(x, y)〉a = 0} ⊆ A

Dual subspaces in the trace representation are teated in Appendix A.2.
The left radical lR(b), b ∈ B(x, y) (resp. A(x, y)), is the subspace

lR(b) := {x ∈ Fl2| ∀y ∈ Fm2 : (b(x, y) = 0)} ⊆ Fl2.

The right radical rR is defined analogously. The rank rank(b) of b(x, y) ∈ B(x, y) (resp. A(x, y)) is defined as
the codimension of the left radical. The rank of b(x, y) =

∑
i,jmi,jxiyj equals the rank of the matrix (mi,j).

Hence the rank of b(x, y) also equals the codimension of the right radical.

A well known property of alternating forms is that every b ∈ A(x, y) has even rank.

The straight forward method of giving a n-dimensional subspace of B(x, y) (resp A(x, y)), for any chosen
representation of bilinear forms, is to give a basis bi or a generator set of the subspace (or its dual).

By choosing a basis fi of Fn2 (or of any n-dimensional subspace V ) the subspace B can be associated with the
bilinear map

B(x, y) : Fl2 × Fm2 → Fn2 , B(x, y) :=

n∑
i=1

fibi(x, y) (3)
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Reversing the process gives us, from a bilinear map B(x, y) : Fl2 × Fm2 → Fn2 , a n-dimensional subspace of B(x, y)
(resp A(x, y)).

In the special case l = m, the alternating bilinear map Bf (x, y) : Fm2 × Fm2 → Fn2 can be represented by
a quadratic function f (see Proposition 1). From [14, Lemma 4,5] follows that f can be reconstructed, up to
equivalence, from Bf and that equivalent alternating bilinear forms Bf , Bf ′ lead to EA-equivalent quadratic
functions f and f ′ and vice versa (the APN condition is not used in the proof).

A geometric characterization quadratic APN functions f (and hence also of the corresponding alternating bi-
linear form Bf ) will be given in Proposition 6. More details are to be found in [14].

In the case that l = m, the n-dimensional subspace of B, resp. A can also be represented in terms of the trace
representation. If l = m = n the subspace can be given by an F2-linear or linearized polynomial in two variables
F2m [X,Y ]. This will be done in Appendix A.

3.2.2. On representations of subspaces of bilinear forms using the tensor notation

If we use the tensor notation for bilinear forms as introduced in Sections 3.1.2 and 3.1.3, we have two further
possibilities.

Variant 2: This is based on Variant 2 for the forms (see Section 3.1.3). There, a bilinear form b ∈ B (resp.
A) was identified with an element of Fl2 ⊗ Fm2 (resp Fm2 ∧ Fm2 ), hence a subspace B ⊆ B (resp. A) will simply be
identified with a subspace S of Fl2 ⊗ Fm2 (resp Fm2 ∧ Fm2 ). Explicitly:

B(x, y) := {b(x, y) =
∑
i,j

mi,jxiyj |
∑
i,j

mi,j(ei ⊗ ej) ∈ S} ⊆ B

B(x, y) := {b(x, y) =
∑
i<j

mi,j(xiyj + xjyi)|
∑
i<j

mi,j(ei ∧ ej) ∈ S} ⊆ A

Observe that S⊥ (with respect to the standard scalar product) gives us this way B⊥(x, y).

Variant 1: This is based on Variant 1 for the forms (see Section 3.1.2). Let V be a n-dimensional subspace
over F2 and Γ a surjective linear map Γ : Fl2⊗Fm2 7→ V (resp. Γ : Fm2 ∧Fm2 7→ V ). The map Γ can be used to give
an (alternating) bilinear map β : Fl2 × Fm2 7→ V (resp. β : Fl2 ∧ Fm2 7→ V ), which can be defined analog to Section
3.1.2 as

β(x, y) = (x⊗ y)Γ =
∑
i,j

xi, yj(ei ⊗ ej)Γ (resp. (x ∧ y)Γ =
∑
i,j

(xiyj + xjyi)(ei ∧ ej)Γ)

This, essentially, already gives us a n-dimensional subspace B of (alternating) bilinear forms and of Fl2 ⊗ Fm2
(resp. Fm2 ∧ Fm2 ), but let’s do it explicitly.

Choose a basis f1, . . . , fn of V over F2, then Γ =
∑
i fiγi for some γi : Fl2⊗Fm2 7→ F2 (resp. γi : Fm2 ∧Fm2 7→ F2).

It is equivalent:

• Γ is a surjective map.

• The projection of Γ on any 1-dimensional subspace of V is non-trivial.

• V and the space spanned by the γi have equal dimension.

Identify the linear maps γi with the elements γ̃i ∈ Fl2 ⊗ Fm2 (as in Section 3.1.3). The γ̃i span a n-dimensional
subspace Γ̃ of Fl2 ⊗ Fm2 (resp. Fm2 ∧ Fm2 ). Using ”Variant 2” gives us now a vector space of bilinear forms.

It will turn out useful for Corollary 4 to observe that for ker(Γ), the kernel of Γ, we have

Proposition 2.
ker(Γ) = Γ̃⊥

Proof. As observed in Section 3.1.3 we have that

γ̃k =
∑
i,j

(ei ⊗ ej)γk (ei ⊗ ej)

Hence for any
∑
i,j ui,j(ei ⊗ ej) ∈ Γ̃⊥ and for all 1 ≤ k ≤ n,

0 = 〈
∑
i,j

ui,j(ei ⊗ ej), γ̃k〉 =
∑
i,j

ui,j(ei ⊗ ej)γk = (
∑
i,j

ui,j(ei ⊗ ej))γk
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by definition of duality. Hence Γ⊥ is in the kernel of each γk, and so also in the kernel of Γ =
∑
i fiγi.

If Γ is surjective, then the dimension of V is the codimension of Γ⊥, hence Γ⊥ is the full Kernel.

For the alternating case we have the analog proof.

As a subspace is unequally determined by its dual this implies that the subspace of bilinear forms given by Γ is
uniquely determined by the kernel of the map Γ. This characterization via the kernel of Γ is e.g. found in [20,22].

4. Different characterizations of APN functions

For a quadratic APN function f the derivate

Bf (x, y) = δyf(x) = f(x+ y) + f(x) + f(y) + f(0)

is an alternating bilinear function B(x, y) : F2m × F2m → F2n . Let the alternating bilinear function given by a
linear function Γ, so B(x, a) = (x ∧ a)Γ (see Section 3.2.2, Variant 1).

A (quadratic) function f is APN if and only if for all a 6= 0 the only nonzero solution x of B(x, a) is x = a.
Observe (0 ∧ a) = (a ∧ a) = 0 ∈ A and 0 6= (x ∧ a) ∈ A for x 6= 0, a.

As B(x, a) = (x∧a)Γ, we have that f is APN if and only if no vector of the form x∧a, x 6= 0, a, is in the kernel
of Γ.

Following Nakagawa [20] call an element x ∧ y, 0 6= x 6= y 6= 0, a pure element of A. This leads to the
following characterization of APN functions:

Proposition 3. f is APN if and only if the kernel of Γ contains no pure element (↔ no pure 1-dim subspace).

It will be useful to have some more notation for subsets of A, introduced by Delsarte and Goethals [12], and for
subsets of B introduced by Delsarte in [11]. We specialize the definitions, which were given in [11,12] for subsets
of A resp. B, here to subspaces and mostly focus on A.

In [11] the q-distance d(b, b′) := rank(b− b′) for elements in b, b′ ∈ B is introduced. Also define the q-weight
w(b) := rank(b). (Perhaps we should call it here the 2-weight and 2-distance).

A subspace B ∈ B is called a t-design if all nonzero elements of B⊥ have q-weight greater then t [11]. As
Delsarte himself stresses the analogy with error correction codes it would be natural to name B⊥ a code in B of
minimal distance t+ 1.

A subspace of alternating bilinear forms Fm2 × Fm2 → F2, B ∈ A is called in [12] a (m, d)-set if all nonzero
elements of B have q-weight at least 2d (so if it is a ”code” of minimal distance 2d).

The cardinality of a (m, d)-set B is bounded by

|B| ≤ 2(m2 ) (r−d+1)
r with r = bm

2
c

A (m, d)-set obtaining this bound is called maximal [12].
For subspaces of B and A the weight distribution (a0, . . . am) of B ∈ B (resp (a0, . . . ar) of B ∈ A) is defined

by ai = |{b ∈ B|wt(b) = i}|, (resp. by ai = |{b ∈ B|wt(b) = 2i}|).
For subspaces, the weight distribution of B⊥ is uniquely determined by the weight distribution of B and can

be computed with a ”MacWilliams-like” transformation.
The weight distribution of maximal (m, d)-sets is uniquely determined [12, Theorem 4.ii], and for subspaces the

dual of a maximal (m, d)-set is a (maximal) (m, r − d+ 2)-set [12, Theorem 5]. An OA-like characterization of a
t-design in A (i.e. of the ”dual code”) is given by Munemasa [19, Theorem 1]

Analog results for subsets of B can be found in [11].

Next we want to give the APN condition in the case that B is given in terms of subspaces of A (see Section
3.2.2, Variant 2).

Proposition 4. f is APN if and only if B⊥ ⊆ A is a (m, 2)-set (↔ B⊥ is a ”code” of distance 4).

Proof. We start from Proposition 3 and use Proposition 2. That ker(Γ) = B⊥ is a (m, 2)-set is equivalent to:
that for all non-zero b ∈ B⊥ the rank(b) ≥ 4, i.e. (as bilinear forms of A have even rank) that there is no b with
rank(b) = 2. Hence it only remains to show that for an alternating bilinear form b it is equivalent:

• b(x, y) hat rang 2

• b(x, y) corresponds to a pure element of Fm2 ∧ Fm2 .
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This follows by Proposition 5 below.

Proposition 5. The elements of rank 2r in A are the elements
∑r
i=1(xi∧yi) with some x1, . . . , xr, y1, . . . , yr ∈ Fm2

which are linearly independent.

Proof. The generic alternating bilinear form of rank 2r is B(x, y) =
∑r
i=1 x2i−1y2i + x2iy2i−1 which corresponds

to the element
∑r
i=1(e2i−1 ∧ e2i) ∈ A.

Any other alternating bilinear form of rank 2r can be obtained by a base change i.e. by the substitution x′ = Lx,
y = Ly, with L a m×m matrix of full rank. Hence B′(x, y) = B(x′, y′) = B(Lx,Ly). The corresponding element
in A is

∑r
i=1(Le2i−1 ∧ Le2i).

As L is nonsingular, we have that the 2r elements Lei ∈ Fm2 are arbitrary linear independent elements.

Observe that for odd m, if m = n, the (m, 2)-set B⊥ in Proposition 4 is maximal, with [12, Theorem 5] we get

Corollary 1. Let m = 2r + 1. Then f : Fm2 → Fm2 is APN if and only if B ∈ A is a (m, r)-set, or equivalently,
if and only if all 0 6= b ∈ B have rank n− 1.

5. Dual Hyperovals

Definition 2. A set V of d + 1-dimensional subspaces in a vector space over F2 is called a (d−dimensional)
dual hyperoval if

H1 For any V 6= V ′ ∈ V, V ∩ V ′ is 1-dimensional.

H2 Any three mutually different Vi ∈ V intersect in zero.

H3 |V| = 2d+1.

The space spanned by the subspaces of V is called the ambient space.

There is a construction of (m− 1)-dimensional dual hyperovals with help of a bilinear map B : Fm2 × Fm2 7→ Fn2
due to Yoshiara [23] (see also [18]). Define:

VB := {Va| a ∈ Fm2 }, Va := {(x,B(x, a))|x ∈ Fm2 } (4)

The ambient space is Fn+m
2 (if B is surjective). VB fulfills condition H3 by construction.

Let Bf (x, y) = δyf(x) = f(x+y)+f(x)+f(y)+f(0) ⊆ A. We have the following characterization of quadratic
APN functions (straight forward, see e.g. [14, 18,23])

Proposition 6. f : Fm2 × Fm2 7→ Fn2 is a quadratic APN function if an only if VBf is a dual hyperoval.

For VB therefore it is handy to give conditions B1 and B2, in terms of the bilinear map B, which are equivalent
to the defining conditions H1 and H2 of a dual hyperoval. Let:

B1 For any y 6= 0 the map My : x 7→ BV(x, y) has rank m− 1.

B2 The map σ : y 7→ kernel(My) is an bijection on Fm2 \ {0}.

We have the following equivalences: Va ∩ Vb ↔ B(x, a) = B(x, b) ↔ x ∈ kerMa+b. H1 says that for all a 6= b
this kernel has to be 1-dimensional, which is equivalent to B1.

Observe that a, b, c are mutually different if and only if a+ b, b+ c, c+ a are mutually different and nonzero.
H2 says that for any mutually different a, b, c the kernels kerMa+b, kerMb+c and kerMc+a hence σ(a + b),

σ(b+c) and σ(c+a) have to be different. It follows that σ : Fm2 \{0} → Fm2 \{0} has to be injective. As image and
preimage are finite and of equal size, this is equivalent to B2, so H2 → B2. On the other hand, if σ is bijective
we have that for mutually different a, b, c also σ(a + b), σ(b + c) and σ(c + a) are mutually different. σ(a + b)
determines the intersection point of Va and Vb, so B2 → H2.

Next we give an alternative condition for B2 which is of the form of B1.

Lemma 2. Let My and σ be defined as above. Assume B1 holds, hence that for y 6= 0 the kernel ker(My) is
1-dimensional. Then the following statements are equivalent:

1. B2

2. B3: For any x 6= 0 the map Nx : y 7→ B(x, y) has rank m− 1.

7



Proof. By assumption it is B(σ(y), y) = 0.
1 ⇒ 2: Assume that σ is a permutation. Then, for fixed x 6= 0, there is exactly one y (i.e. y = σ−1(x)) such

that B(x, y) = 0. So σ−1(x) is the only non-zero element in ker(Nx).
2 ⇒ 1 : Assume that for x 6= 0 the kernel ker(Nx) is 1-dimensional. Assume σ is no permutation. Then there

is an element v 6= 0 which is not an image of σ. Hence B(v, y) 6= 0 for all y 6= 0, so ker(Nv) = 0, a contradiction
to the assumption.

For subspaces V ⊆ Fu2 the dual subspace V ⊥ is defined as V ⊥ = {v′ ∈ Fu2 | ∀v ∈ V : 〈v, v′〉 = 0}. The dual
V⊥of a dual hyperoval V is defined as V⊥ = {V |V ⊥ ∈ V}.

We now introduce some bilinear forms associated to the bilinear form B. For one, as these bilinear forms are
sources of new dual hyperovals. For two, as we then can characterize dual hyperovals entirely ”natural” properties
of bilinear forms, i.e. get rid of the linear maps My and Nx.

Definition 3. Let B be an n-dimensional vector space of bilinear forms B : Fl2 × Fm2 → F2 and ψ : B → Fn2 a
vector space isomorphism. Define the l-dimensional vector space of bilinear forms B† : Fn2 × Fm2 → F2 as

B† := {b†x|x ∈ Fl2}, b†x(z, y) = ψ−1(z)(x, y)

Different isomorphisms ψ lead to isomorphic vector spaces of bilinear forms B†. Define also:

B∗(y, x) = B(x, y)

Notation will get considerably more comfortable if we choose the right bases and always identify a vector space
of bilinear forms with a bilinear map to a vector space of the same dimension.

Choose a basis ei of Fl2, and a basis fi of Fn2 . Denote their dual bases (with respect to the standard scalar
product) as ēi, resp. f̄i. Choose as well a basis bi of B.

Identify B with the map B(x, y) =
∑
i f̄ibi(x, y). Choose ψ as the map bi 7→ fi. Then:

b†x(z, y) = ψ−1(z)(x, y) =
∑

zibi(x, y) = z ·B(x, y).

Choose b†ei(z, y) as basis of B†. Identify B† with the map B(z, y)† =
∑
i ēib

†
i (z, y) =

∑
i ēi(z ·B(ei, y)). Finally

chose, for defining B††, the isomorphism ei ↔ b†i and repeat the above process. Then

B(x, y)†† =
∑
j

f̄j(x ·B†(fj , y)) =
∑
j

f̄j(
∑
i

(x · ēi)(fj ·B(ei, y)))

=
∑
j

∑
i

xif̄jbj(ei, y)) =
∑
j

∑
i

f̄jbj(xiei, y) = B(x, y)

Hence † is a involution. Combinations of † and ∗ can effect an arbitrary permutation of the roles x, y, z and
hence lead to 6 subspaces of bilinear forms respectively 6 bilinear maps:

B,B∗, B†, B†∗, B†∗† = B∗†∗, B∗†

We have the following identities:

z ·B(x, y) = z ·B∗(y, x) = x ·B†(z, y) = x ·B†∗(y, z) = y ·B†∗†(x, z) = y ·B∗†(z, x) (5)

= bz(x, y) = b∗z(y, x) = b†x(z, y) = b†∗x (y, z) = b†∗†y (x, z) = b∗†y (z, x)

If n = m there is an interpretation of B† in terms VB . Chose in the definition of V⊥B the scalar product as
〈(x, y), (x′, y′)〉 := x · y′ + x′ · y. Then:

〈(x,B(x, a)), (x′, B†(x′, a))〉 = x′B(x, a) + xB†(x, a)

By Equation 5 it is x′B(x, a) = xB†(x′, a), hence:

Proposition 7.
VB† = V⊥B

We are now ready to give the defining conditions for dual hyperovals completely in terms of bilinear forms. The
following statements are equivalent:

• ∀z ∈ Fn2 : z ·B(x, y) = 0

• B(x, y) = 0

8



Therefore:

σ(y) = ker(My) = rR(b∗†y (z, x)) = lR(b†∗†y (x, z))

σ−1(x) = ker(Nx) = rR(b†x(z, y)) = lR(b†∗x (y, z))

With this observation B1 and B3 can be rewritten either in terms of the radicals of bilinear forms or as:

Corollary 3. VB is a dual hyperoval if and only if:

1. B4: Any 0 6= b ∈ B∗† has rank m− 1

(Equivalently: Any 0 6= b ∈ B†∗† has rank m− 1)

2. B5: Any 0 6= b ∈ B† has rank m− 1.

(Equivalently: Any 0 6= b ∈ B†∗ has rank m− 1)

Let m = n, f be an APN function and Bf ⊂ A the associated alternating bilinear map. We want to see when
the dual of the APN-dual hyperoval VBf , hence (using Proposition 7) V

B
†
f

is a dual hyperoval.

Use B4 and B5 as defining conditions. Hence V
B
†
f

is a dual hyperoval if and only if every nonzero b ∈ B††∗†f

has rank m− 1 and every nonzero b ∈ B††f has rank m− 1.

As † is an involution and Bf is alternating, so B∗f = Bf , this simplifies to: Every nonzero b in B†f and Bf has
to have rank m− 1.

By assumption f is APN, so by Proposition 6 we have that VBf is a dual hyperoval. Hence condition B5 holds
for VBf . Therefore it only remains to show that every nonzero b in Bf has to have rank m− 1.

As Bf is alternating all b ∈ Bf have even rank. This shows that V
B
†
f

cannot be a dual hyperoval if m is even.

If m is odd Corollary 1 implies V
B
†
f

is a dual hyperoval. Thus we have an alternative proof (relaying essentially

on [12, Theorem 5]) of Taniguchi’s result [21, Theorem 11]:

Corollary 4. Let f : Fm2 → Fm2 be an APN function and Bf (y, x) = f(x + y) + f(x) + f(y) + f(0). Then V
B
†
f

(= V⊥Bf
) is a dual hyperoval if and only if m is odd.

A. Appendix: Details on the trace representation

Any F2-bilinear function B(x, y) : F2m × F2m 7→ F2m can be written as a polynomial in two variables, which is
linearized with respect to each of the two variables, so as:

B(x, y) =

m−1∑
i,j=0

ai,jx
2i

y2j

, ai,j ∈ F2m (6)

Call this a linearized polynomial in two variables.
Hence any bilinear function b(x, y) : F2m × F2m 7→ F2 can be written as the trace of a linearized polynomial in

two variables, i.e.
b(x, y) = tr(B(x, y))

However this representation of the bilinear function is not unique. As tr(x) = tr(x2i

) we can modify the
representation of b(x, y) in the following way.

b(x, y) = tr(
m−1∑
i,j=0

ai,jx
2i

y2j

) =

m−1∑
i,j=0

tr(ai,jx
2i

y2j

) =

m−1∑
i,j=0

tr(a2−j

i,j x
2i−j

y) = tr(
m−1∑
i,j=0

a2−j

i,j x
2i−j

y)

So we have that

b(x, y) = tr(l(x)y) with l(x) =

m−1∑
k=0

αkx
2k

where αk :=

m−1∑
j=0

a2−j

k+j,j (7)

The indices are to be understood modulo m. This representation is now unique (the dimension over F2 of the
vector space of bilinear functions is m2, which is also the dimension over F2 of the α-tuples in (F2m)m). This
representation is usually dedicated to Delsarte and Goethals [12]. We named this the trace representation of
a bilinear form.

We also identify b(x, y) with the element (α0, . . . , αm−1) ∈ (F2m)m which defines the linearized polynomial l.
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The trace representation for alternating bilinear forms
A linearized polynomial B(x, y) in two variables is called alternating if B(x, x) = 0 (which again implies

B(x, y) = B(y, x)). In Equation 6 we have therefore ai,i = 0 and ai,j = aj,i.
Any alternating bilinear form can be written as the trace of an alternating linearized polynomial. This implies

for the trace representation of an alternating bilinear form (Equation 7)

α−k =

m−1∑
j=0

a2−j

−k+j,j =

m−1∑
j=0

a2−j−k

j,k+j = (

m−1∑
j=0

a2−j

j,k+j)
2−k

= (

m−1∑
j=0

a2−j

k+j,j)
2−k

= α2−k

k

So for alternating forms the following holds:

α0 = 0, αk = α2k

m−k, Especially if m = 2r we have αr = α2r

r , i.e. αr ∈ F2r .

So the trace representation of an alternating form is determined by the element

(α1, . . . αr) ∈

{
(F2m)r−1 × F2m/2 if m = 2r

(F2m)r if m = 2r + 1

A.1. Computing the coefficients of the trace representation

The representations of the a bilinear form, discussed in Section 3, were determined by the m2 values mi,j =
b(ei, ej) ∈ F2. So these characterizations can be obtained from the trace representation by choosing a basis ei of
F2m over F2 and calculating mi,j = b(ei, ej) = tr(l(ei)ej).

We also want to provide the opposite direction, i.e. to give l(x), more precisely the values αk, in terms of the
mi,j = b(ei, ej) ∈ F2. This will be done in two steps.

Identify Fm2 with F2m by identifying x = (x1, . . . , xm) ∈ Fm2 with
∑
xiei ∈ F2m .

Step one: We determine the linearized polynomial lU (x) =
∑m
i=1 αiX

2i

effecting the same map as x 7→ xtU
with some m×m matrix U , i.e

xtU =
∑
i,j

xiui,jej
!
=
∑
j

αj(
∑
i

xiei)
2j

=
∑
i

xi
∑
j

αje
2j

i

So we get the αi as solution of the following F2m -linear equation:

Ue = Ea, hence a = E−1Ue, with Ei,j = e2j

i , e = (e1, . . . , em)t, a = (α1, . . . , αm)t.

Note that E has full rank (see e.g. [13, Bem 2.15.]).

Step two: Let M = (mi,j) be the m×m matrix, defined by mi,j = b(ei, ej) ∈ F2. Let C be the m×m-matrix
over F2, with Ci,j = tr(ei, ej). C is the Gram matrix with respect to the basis ei and the trace form and hence
has full rank.

Choosing l as the linearized polynomial lMC−1 gives the trace representation of b(x, y). Set

xtMC−1 = l(x) =:
∑
i

liei

with this we see that:

tr(l(x)y) = tr(
∑
i,j

lieiyjej) =
∑
i,j

liCi,jyj = lCy = xtMC−1Cy = b(x, y)

A.2. Dual subspaces in the trace representation

In case that the space of bilinear forms and its dual are denoted in the trace representation we use an adapted
scalar product. Let a vector space of bilinear forms B be given by a (generating) set SB of vectors (α1, . . . , αm)
in (F2m)m. Define the dual subspace B⊥ in terms of vectors SB⊥ as

SB⊥ := {(α′1, . . . , α′m) ∈ (F2m)m| ∀(α1, . . . , αm) ∈ SB : tr(
m∑
i=1

αiα
′
i) = 0}

And for alternating bilinear forms, where B is given by a (generating) set SB ,

SB ⊆

{
(F2m)r−1 × F2m/2 if m = 2r

(F2m)r if m = 2r + 1

There are two versions depending on the parity of m.
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Case m = 2r

SB⊥ := {(α′1, . . . , α′r) ∈ (F2m)r−1 × F2m/2 | ∀(α1, . . . , αr) ∈ SB : tr(
r−1∑
i=1

αiα
′
i) + Tr(αrα

′
r) = 0}

where tr and Tr are the absolute traces in F2m respectively F2r .

Case m = 2r + 1

SB⊥ := {(α′1, . . . , α′r) ∈ (F2m)r| ∀(α1, . . . , αr) ∈ SB : tr(
r∑
i=1

αiα
′
i) = 0}

A.3. Starting from an quadratic (APN) function for m = n

Let f : F2m 7→ F2m be a quadratic function with

f(x) = xtAfx :=
∑
i<j

ai,jx
2i+2j

+ L(x)

where Af ∈ F2m × F2m is an upper triangular matrix with main diagonal zero and L is an affine function. The
associated bilinear map Bf is the linearized polynomial in two variables Bf : F2m × F2m 7→ F2m with

Bf (x, y) := δyf(x) = f(x+ y) + f(x) + f(x) + f(0) = xt(Atf +Af )x =
∑
i<j

ai,j(x
2i

y2j

+ x2j

y2i

)

Identify Bf (x, y) with the m-dimensional vector space of alternating bilinear forms of F2m × F2m 7→ F2, also
called Bf , this vector space consists of the elements

tr(ωBf (x, y)) with ω ∈ F2m .

Define the currently undefined ai,j with i ≥ j by ai,i = 0 and ai,j = aj,i, so as the coefficients of the matrix by

(Atf +Af ). Then the linearized polynomial lω =:
∑
k α

(ω)
k x2k

corresponding to tr(ωBf (x, y)) has coefficients

α
(ω)
k :=

m−1∑
j=0

(ωak+j,j)
2−j

Denote the coefficient vector space of Bf as SBf := {(α(ω)
1 , . . . , α

(ω)
r )|ω ∈ F2m}.

In Section 3.2.2 dual space of B⊥f is used. B⊥f can be expressed efficiently in terms of f . Choose the scalar
product introduced for the trace representation in Section A.2.

Case m = 2r + 1

SB⊥
f

:= {(α′1, . . . , α′r) ∈ (F2m)r| ∀(α1, . . . , αr) ∈ SBf : tr(
r∑
i=1

α′iαi) = 0}

We modify the trace term:

0 = tr(
r∑
i=1

α′i

m−1∑
j=0

(ωai+j,j)
2−j

) =

r∑
i=1

m−1∑
j=0

tr(α′i(ωai+j,j)
2−j

) =

r∑
i=1

m−1∑
j=0

tr(ωα′i
2j

ai+j,j) = tr(ω
r∑
i=1

m−1∑
j=0

α′i
2j

ai+j,j)

This holds for all ω ∈ F2m , hence is equivalent to
∑r
i=1

∑m−1
j=0 α′i

2j

ai+j,j = 0. Define the linearized polynomials

λi as the linearized polynomial whose coefficients are the i-th diagonal of (Atf +Af ), i.e.

λi(x) :=

m−1∑
j=0

ai+j,jx
2j

We have shown:

SB⊥
f

:= {(α′1, . . . , α′r) ∈ (F2m)r|
r∑
i=1

λi(α
′
i) = 0}

Case m = 2r Proceed as for odd m. We only have to take special care for the term involving ar+j,j . So we

already can assume that the condition defining SB⊥
f

is: tr(ω
∑r−1
i=1 λi(α

′
i)) + Tr(α′r

∑m−1
j=0 (ωar+j,j)

2−j

) = 0.
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We now transform the Tr Term. Use ai,j = aj,i and α′r ∈ F2r . Let τ be the trace from F2m to F2r (i.e.
τ : x 7→ x2r

+ x) and observe that tr = Tr ◦ τ .

Tr(α′r

m−1∑
j=0

(ωar+j,j)
2−j

) = Tr(α′r

r−1∑
j=0

((ωar+j,j)
2−j

+ (ωar+j+r,j+r)
2−j−r

))

=

r−1∑
j=0

Tr(α′r
2j

τ(ωar+j,j)) = Tr(τ(

r−1∑
j=0

α′r
2j

ωar+j,j)) = tr(ω
r−1∑
j=0

α′r
2j

ar+j,j)

Hence our condition for SB⊥
f

is

∀ω ∈ F2m : 0 = tr(ω(

r∑
i=1

λi(α
′
i) +

r−1∑
j=0

α′r
2j

ar+j,j)) ⇔ 0 =

r∑
i=1

λi(α
′
i) +

r−1∑
j=0

α′r
2j

ar+j,j

Define the linearized polynomial λr (over Fr2) as λr(x) :=
∑r−1
j=0 ar+j,jx

2j

. With this we get formally the same

condition1 for SB⊥
f

as in the odd case. We summarize the above results:

Proposition 8. Let f(x) =
∑
i<j ai,jx

2i+2j

+ L(x) with alternating map Bf (x, y) =
∑
i<j ai,j(x

2i

y2j

+ x2j

y2i

)

and λi(x) :=
∑m−1
j=0 ai+j,jx

2j

. For m = 2r + 1 it is

SB⊥
f

:= {(α′1, . . . , α′r) ∈ (F2m)r|
r∑
i=1

λi(α
′
i) = 0}

And for m = 2r, with λr(x) :=
∑r−1
j=0 ar+j,jx

2j

, it is

SB⊥
f

:= {(α′1, . . . , α′r) ∈ (F2m)r−1 × F2r |
r∑
i=1

λi(α
′
i) = 0}

Observe that f (up to a affine function) , Bf , as well as the λi are completely determined by Af . And that
the knowledge of one of f , Bf or (λi| 1 ≤ i ≤ r) is sufficient to reconstruct Af . In particular you can also write f
and B in terms of the λi:

f(x) =

r∑
i=1

λi(x
2i+1) and Bf (x, y) =

r∑
i=1

((λi(x
2i

y) + (λi(xy
2i

))

A.3.1. Examples

The λ of a monomial: For f(x) = cx(2i+1)2j

, i < j, only λi(x) = cx2j

is nonzero.

So the Gold function f(x) = x2i+1 has as equivalent condition α′i = 0.

The λ of the trace of a monomial: let i ≤ (n−1)/2 and f(x) = c tr(x2i+1) = c tr(x(2i+1)2j

) = c
∑m−1
l=0 x(2l+1)2l

.

Then the only non-zero λ∗ is λi(x) =
∑m−1
l=0 x2l

c = c tr(x). (For f(x) = tr(cx2i+1) we get λi(x) = tr(cx).)
In the case m = 2r, i = r we get the analog result by replacing tr by Tr.

This enables us to give without effort the defining condition for SB⊥
f

, if the APN function is given in the form

f =
∑bn/2c
i=1 gi, where gi is one of the two cases discussed above.

E.g. for the APN function f(x) = x3 + tr(x9) the defining condition is α′1 + tr(α3) = 0.

Most of the known quadratic APN have few terms. APN functions for small m can be found in [4, 15, 16]. We
provide also a list of the infinite series (as far as currently known to the author).

f(x) = Reference

x2i+1 (i,m) = 1, The Gold function [17]

x3 + tr(x9) [7, Corollary 1]

x2s+1 + wx2ik+2nk+s

m = 3k further cond. see [6, Corollary 1] and [1]

x2s+1 + wx2ik+2nk+s

m = 4k further cond. see [6, Theorem 2] and [1]

bx2s+1 + b2
k

x2k+s+2k

+ cx2k+1 +
∑k−1
i=1 rix

2i+k+2i

m = 2k, k, s odd, further cond. see [3, Theorem 1]

ux2−k+2k+s

+ u2k

x2s+1 + vx2k+s+2s

m = 3k, (s, 3k) = 1, further cond. see [3, Theorem 3]

u2k

x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

m = 3k, (s, 3k) = 1, further cond. see [2, Theorem 2.1]

x22i+2i

+ bx2r+1 + cx2r(22i+2i) m = 2r, (i, r) = 1 further cond. see [5, Corollary 1]

x(x2i

+ x2r

+ cx2i+r

) + x2i

(c2
r

x2r

+ sx2i+r

) + x2i+12r

m = 2r, (i, r) = 1 further cond. see [5, Corollary 2]

1Note that the arguments are in F2r but λr(x) ∈ F2m [x].
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