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Abstract

We determine the dimensions of subfield codes of Reed-Solomon codes and
construct certain extensions and lengthenings of these codes. We start from
the duals, using the language of orthogonal arrays. As a first result this allows
us to obtain a fair number of improvements in the list of binary, ternary and
quaternary linear codes with largest known minimal distance.

1 Introduction

We determine the parameters of the Reed-Solomon subfield codes (RS-subfield
codes for short) and construct several types of codes related to them. In sec-
tion 2 we define a class of linear orthogonal arrays whose duals are the RS
subfield codes. This description is used to show that in many parametric
situations the RS subfield codes can be lengthened ( Theorem 3 and Corol-
lary 1). The parameters of the RS subfield codes are determined in section 3.
Another method of lengthening is introduced in section 4 and used to obtain
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some particularly good codes. In section 5 we collect the information ob-
tained so far for the codes falling in the range of the data base [3]. Aside of
the codes obtained by the methods of the preceding sections we also include
here lengthenings of RS subfield codes obtained by computer search. The
computer search was based on the orthogonal arrays described in section 2.
Suitable extensions of these by additional columns lead to lengthenings of
the RS subfield codes. The material collected in section 5 yields a large
number of good codes, which form chains by inclusion. This is the setting
for the application of construction X (Theorem 9, see [9], p.581/582). We do
this systematically in section 6 and obtain a large number of new codes. In
section 7 we use the fact (obtained by computer) that some of the RS sub-
field codes have large dual distance and obtain yet more good codes. Among
others we make use of construction Y1 here ( Theorem10, see [9],p.592). In
the appendices we give check matrices or generator matrices of a few good
codes and the proof of a technically difficult lengthening theorem.
Among our best codes we mention the optimal codes

[39, 12, 14]2, [155, 132, 8]2, [86, 77, 5]3, [39, 29, 6]3, [85, 74, 6]3,

[30, 7, 16]3, [85, 7, 54]3, [65, 57, 5]4, [70, 7, 48]4

as well as the non-optimal codes

[39, 26, 7], [85, 70, 7]3, [82, 66, 8]3, [33, 8, 17]3, [32, 23, 6]4, [81, 70, 6]4, [70, 8, 46]4.

Here optimality means that the minimum distance is maximum. The sub-
script denotes the field over which the code is defined. Observe that a
ternary code [30, 7, 16]3 was obtained independently by Boukliev [4] with
other means.

2 Basic Theory

An orthogonal array with parameters OAλ(t, k, v) is defined as a multiset
A of mappings from a k-set C into a v-set E such that for every choice of
t distinct elements x1, x2, . . . xt in C and t not necessarily distinct elements
y1, y2, . . . yt in E there are exactly λ elements f ∈ A affording the operation
f(xi) = yi, i = 1, 2, . . . t. We will often visualize an orthogonal array as an
array with λvt rows and k columns, where each mapping contributes a row.
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Definition 1 Let q be a prime-power, n > 1 a natural number, tr : IFqn −→
IFq the trace. Put F = IFqn , let 2 ≤ t ≤ qn. The array A(t) = A(q, n, t) has
qn columns indexed by u ∈ F and qn(t−1)+1 rows indexed by pairs (p(X), z),
where z ∈ IFq and p(X) is a polynomial of degree < t, p(0) = 0, with coeffi-
cients in F. The entry of A(t) in column u and row (p(X), z) is

tr(p(u)) + z.

From now on we fix the ground field IFq and the extension field F = IFqn .
We showed in [1] that A is an orthogonal array of strength t, with parameters
OAq(t−1)(n−1)(t, qn, q). This is a rather straightforward application of Lagrange
interpolation. Our Theorem 2 will imply another proof of this fact.

We also studied the question of simplicity of these arrays.

Definition 2 With the same notation as above let P0(t) = P0(q, n, t) be the
IFq−vector space of polynomials p(X) ∈ IFqn [X] satisfying p(0) = 0, deg(p(X)) <
t and tr(p(u)) = 0 for every u ∈ F. Denote by ρ0(t) = ρ0(q, n, t) the dimen-
sion of the IFq−vector space P0(t).

We showed in [1] that each row of A(t) occurs with multiplicity qρ0(t).
This is the motivation behind the definition of P0(t). It follows that the
simplification of A(t), where each row is written only once, is an orthogonal
array with parameters

OAq(t−1)(n−1)−ρ0(t)(t, qn, q).

Moreover these OA are IFq−linear. It follows from Delsarte theory ( and
the reader can easily prove this claim) that the dual code has parameters

[qn, qn − (n(t− 1) + 1) + ρ0(t), t + 1].

Another basic Theorem ( see [9], page 208) customarily attributed to
Delsarte states that the trace-code of a code C is the subfield code of the
dual C⊥. We apply this buted to Delsarte states that the trace-code of a
code C is the subfield code of the dual C⊥. The dual of the array A(q, n, t)
is the same as the dual of the trace-code of RS(t, IFqn). As the duals of
Reed-Solomon codes are Reed-Solomon codes again we conclude that A⊥ is
a subfield code of a Reed-Solomon code. We collect this information in the
following Theorem:
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Theorem 1 A⊥ is the subfield code of the Reed-Solomon code of dimension
qn − t over IFqn :

A⊥ = RS(qn − t, IFqn) |IFq .

It is well-known that RS(qn − t, IFqn) |IFq has the affine group of order
qn(qn − 1) as a group of automorphisms ( see [8], p.84). It is also clear that
the Galois group of F | IFq operates as a group of automorphisms. The
preceding Theorem shows that this is also true of our arrays A(t) :

Proposition 1 The group AΓL(1, qn) of order qn(qn − 1)n is contained in
the group of automorphisms of A(t).

We remark that in the generic case this is the full automorphism group
of A(t). This follows from the fact, derived from the classification of finite
simple groups, that the group AΓL(1, qn) is almost always a maximal sub-
group of the symmetric or of the alternate group.

We will show that A can be extended by n additional columns to an
orthogonal array of the same strength. This will allow us to lengthen the
Reed-Solomon subfield code A(t)⊥ in many cases.

Definition 3 We define the array A∗(t) with qn+n columns in the following
way: In the first qn columns A∗(t) coincides with A(t). Let φ1, φ2, . . . , φn be
a complete set of linear independent linear forms of IFqn , where IFqn is seen
as a vector space over IFq. The n last columns of A∗(t) are indexed by the φi.
The entry in row (p(X), z) and column φ is defined as φ(at−1), where at−1 is
the leading coefficient of p(X).

Theorem 2 The array A∗(t) is an IFq−linear orthogonal array of strength
t, hence with parameters OAq(t−1)(n−1)(t, qn + n, q).

Proof: Pick a set of t columns, indexed by x1, x2, . . . , xa ∈ F = IFqn and by
the linear forms φ1, φ2, . . . , φt−a. Further pick elements α1, . . . , αa, β1, . . . , βt−a ∈
IFq. We have to count the number λ of rows (p(X), z) satisfying

tr(p(xi)) + z = αi, (i = 1, 2, . . . , a)

φj(at−1) = βj, (j = 1, 2, . . . , t− a).
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By subtracting we see that we have to count the polynomials p(X) of
degree ≤ t− 1, satisfying p(0) = 0 and

tr(p(x1)− p(xi)) = α1 − αi, (i = 2, . . . , a)

φj(at−1) = βj, (j = 1, 2, . . . , t− a).

Let Ui = tr−1(α1−αi), i = 2, . . . , a and fix a tuple (u2, . . . , ua) ∈ U2×. . .×
Ua. Consider the number of polynomials p(X) as above satisfying instead of
the above

p(x1)− p(xi) = ui, (i = 2, . . . , a) (1)

φj(at−1) = βj, (j = 1, 2, . . . , t− a). (2)

Let µ be the number of solutions. We will see that µ does not depend
on the choice of the ui. It will then follow that λ = q(a−1)(n−1)µ : In fact,
by Lagrange interpolation there is precisely one polynomial p(X) of degree
≤ a−1 satisfying p(0) = 0 and equation 1. It follows that the number of such
polynomials of degree ≤ t− 1 is (qn)(t−1)−(a−1) = qn(t−a). It is clear that each
value of at−1 is taken on the same number of times here. Condition 2 affects
only at−1. It says that at−1 is in a certain coset of a subspace of codimension
t − a of F. We get µ = qn(t−a−1)+n−(t−a), and λ = q(a−1)(n−1)µ = q(t−1)(n−1),
as predicted.

We aim at extending the codes A(t)⊥. Let δ(t) = ρ0(t) − ρ0(t − 1). The
highest coefficient at−1 of polynomials in our space P0(t) of dimension ρ0(t) as
in Definition 2 is in a subspace U of dimension δ(t). Choose the linear forms
φ1, . . . , φn−δ(t) such that U is the intersection of their kernels and consider
the extension of A(t) by the corresponding n− δ(t) columns. It follows right
from the definition that the multiplicity of rows of this extension is still the
same as in A(t), namely qρ0(t). In particular the dimension of the space of
rows is unchanged. It follows that the dual code has the parameters of an
(n−δ(t))-fold lengthening of A(t)⊥. More precisely the following is obtained:

Theorem 3 With q, n, t, ρ0(t) as before, and δ(t) = ρ0(t) − ρ0(t − 1), there
is a linear q-ary code with parameters
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[qn + n− δ(t), qn − n(t− 1)− 1 + ρ0(t) + n− δ(t), t + 1] =

= [qn + n− δ(t), qn − n(t− 2)− 1 + ρ0(t− 1), t + 1].

The proof of Theorem 3 shows that we do not really need the linear
forms φi to be independent. It suffices when any t of them are linearly
independent. This is equivalent to using a linear OAqn−t(t, e, q) for some e.
We can use this to append e columns to the array A(t). Observe that an
orthogonal array as above will exist if and only if its dual, a q-ary linear code
[e, e− n, t + 1], exists. We aim at lengthening A(t)⊥ again. Let us speak of
an e-step lengthening if we construct a code with length and dimension
increased by e and same minimum distance. In our situation it suffices to
observe that an e-step lengthening certainly will exist whenever t ≤ n and
ρ0(t) = ρ0(t− 1). We summarize this in the following Corollary:

Corollary 1 If t ≤ n and ρ0(t) = ρ0(t−1), and if there is a q-ary linear code
[e, e− n, t + 1], then the Reed-Solomon subfield code A⊥ may be lengthened e
times to yield a code with parameters

[qn + e, qn − (n(t− 1) + 1− ρ0(t)) + e, t + 1].

When applied in case t = 2 Corollary 1 produces the Hamming codes.
The determination of the dimension of the subfield subcodes of Reed-Solomon
codes and of their extensions as described above is equivalent to the deter-
mination of ρ0(q, n, t). We will study this function in the next section.

3 The function ρ0(q, n, t).

Observe that all dimensions are dimensions of IFq−vector spaces. Denote by
P0 the space of all polynomials p(X) with coefficients in F satisfying p(0) = 0
and tr(p(u) = 0 for all u ∈ F. First a basic fact:

Proposition 2

ρ0(t) ≤ ρ0(t + 1), ρ0(t + 1)− ρ0(t) ≤ n.

This is rather obvious. A first result is the following:
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Theorem 4

ρ0(q) = 0, ρ0(q + 1) = n.

Proof: It is clear that ρ0(q) = 0 as a non-constant polynomial takes on
each value at most as often as its degree. The polynomials α ·X − αq ·Xq,
where α ∈ F show ρ0(q + 1) = n.

Let us start from the other side and determine ρ0(q
n) : Let P̃0 be the

space of polynomials of degree < qn, all of whose values have trace = 0. Put
U = {u | u ∈ F, tr(u) = 0}. By Lagrange interpolation each polynomial
in P̃0 is uniquely determined by the set of its values vu ∈ U, u ∈ F. Thus
| P̃0 |= (qn−1)qn

, or dim(P̃0) = (n − 1)qn. Now P0(q
n) is exactly the set

of polynomials without constant term in our space. As P̃0 is closed under
addition of constants from U we get:

Lemma 1 ρ0(q
n) = (n− 1)(qn − 1).

It follows that the simplification of A(t) in case t = qn is OA1(q
n, qn, q),

the set of all such tuples.
Aart Blokhuis has pointed out to us the relevance of Rédei’s book [10] to
our problems. In fact, the introductory chapter of that book leads to a
characterization of the function ρ0 in terms of cyclotomic cosets. We need
some preparation:

Definition 4 Let ρ1(t) be the dimension of the IFq-vector space of polyno-
mials p(X) with coefficients in IFqn , of degree ≤ t − 1, satisfying p(0) = 0
and

p(α) ∈ IFq for all α ∈ IFqn

We know that the dimension of A(t)⊥ is qn− (t− 1)n− 1 + ρ0(t). On the
other hand we have a concrete description as a subfield subcode of a Reed
Solomon code:

A⊥ = {p(X) | p(X) ∈ IFqn(X), deg(p(X)) < qn − t, p(IFqn) ⊆ IFq}.

In fact, if two such polynomials would yield the same qn−tuple of values,
their difference would have degree ≥ qn. We observe that if p(X) ∈ A(t)⊥
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and z ∈ IFq, then p(X) + z ∈ A(t)⊥. If we add the condition p(0) = 0 to
the above description, then we arrive at the definition of the space whose
dimension is ρ1(t). This leads to the following relation, which may be seen
as a relation of duality:

Theorem 5

qn + ρ0(t) = (t− 1)n + 2 + ρ1(q
n − t)

Rédei’s theorem characterizes the function ρ1(t) :

Theorem 6 (Rédei) Write t in q−adic representation, with n digits. Con-
sider the action of the cyclic group of order n on these digits. Call t maximal
if none of these cyclic shifts represents a number > t. Denote by s the length
of this orbit under the cyclic group (observe that s divides n). Then

ρ1(t + 1)− ρ1(t) =
{

0 if t is not maximal
s if t is maximal.

The duality between ρ0 and ρ1 shows that ρ0(t + 1)− ρ0(t) is determined
by the cyclic shifts of the q−adic representations of the number qn − t − 1.
Let us fix notation:

Definition 5 For every integer t, let btc denote the remainder mod qn − 1,
chosen among {1, 2, . . . , qn − 1}. Denote by π(t) = πn(t) the q−adic rep-
resentation of btc with n digits. Thus, if btc =

∑n−1
i=0 aiq

i, then π(t) =
(an−1, . . . , a1, a0).

Lemma 2 If π(t) = (an−1, . . . , a1, a0), then π(tq) = (an−2, . . . , a1, a0, an−1).

Proof: Let btc =
∑n−1

i=0 aiq
i. Then btqc =

∑n−2
i=0 aiq

i+1+an−1q
n =

∑n−2
i=0 aiq

i+1+
an−1.

It follows that the π(tqi), i = 0, 1, . . . , n − 1 are just the cyclic shifts of
π(t). So they form an orbit under the action of the cyclic group of order n
(a cyclotomic coset). The relation between π(t) and π(qn − 1 − t) is now
obvious:

8



Lemma 3 π(qn−1− t) = π(t). This means that for π(t) = (an−1, . . . , a1, a0)
we have π(qn − 1− t) = π(t) = (q − 1− an−1, . . . , q − 1− a1, q − 1− a0).

In particular t is maximal in the sense of Rédei’s theorem if and only if
qn − 1 − t is minimal. It is also clear that the length s of the orbit of π(t)
under Zn equals the length of the orbit of π(qn−1−t) = π(−t). Thus Rédei’s
theorem, when applied to our function ρ0(t), looks as follows:

Corollary 2

ρ0(t + 1)− ρ0(t) =
{

n if t is not minimal
n− s if t is minimal

Here s is the length of the orbit containing π(t) under the action of the cyclic
group of order n.

4 Another method of lengthening

We have obtained lengthenings of RS subfield codes A(t)⊥ in Theorem 3
and Corollary 3. In this section we introduce another method of obtaining
such lengthened codes in suitable parametric situations. We start from a
Definition, which may at first look strange.

Definition 6 Let F = IFqn , k a natural number.
(i) Let P be a 1-dimensional IFq−subspace of F (equivalently a point in the
(n − 1)−dimensional projective geometry over IFq). Call P k-bad if there
exist k distinct elements x1, x2, . . . , xt ∈ F such that with yi =

∏k
j=1,j 6=i(xi −

xj) we have
1/yi ∈ P, i = 2, 3, . . . , k.

In the contrary case P is k-good.
(ii) Let tr : F −→ IFq be the trace, H = Ker(tr) the kernel of the trace.
Further let L ⊂ F be a hyperplane ((n − 1)−dimensional IFq− subspace).
Certainly L = α ·H for some α ∈ F. L will be called k-good if P = α · IFq

is.
(iii) Let C be a linear q-ary code of dimension n and some length e. Write
C as a collection of e linear functionals φi : F −→ IFq, i = 1, 2, . . . , e. Call φi

k-good if its kernel is. The code C is k-good if all the φi are k-good.
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Theorem 7 Assume ρ0(t) = n + ρ0(t − 1) and ρ0(t − 1) = m + ρ0(t − 2),
where m < n. Let U be the m-dimensional IFq−space of the coefficients at
X t−2 of polynomials from P0(t− 1).
If there is a (t−1)-good IFq−ary code C of dimension n, length e and strength
t such that U ⊆ Ker(φ) for every linear functional φ describing a column
of C, then there exists an e-step extension of the code A(t)⊥. This is then a
code with parameters [qn + e, qn − {(t− 1)n + 1}+ ρ0(t) + e, t + 1].

Proof: It is clear, by the results of the preceding sections, that the sim-
plifications of A(t) and of A(t− 1) are the same, and hence so are the duals.
We will work with A = A(t − 1). Let φi : F −→ IFq, i = 1, 2, . . . e be the
linear functionals describing the columns of C. Each φi yields an additional
column, where the entry in row (p(X), z) is defined as φi(at−2). This defines
an extension of A by e additional columns. The main point is to prove that
this extension still is an orthogonal array of strength t.
So consider sets of t different columns. If they all belong to A, then there
is nothing to prove. Consider first the case that exactly one of the columns
does not belong to A. So let t− 1 different elements x1, x2, . . . , xt−1 ∈ F and
t − 1 elements α1, α2, . . . , αt−1 ∈ IFq be given, and let φ be one of the φi.
Proceeding as in the proof of Theorem 2 we see that we have to consider the
polynomials p(X) defined over F, of degree ≤ t− 2, satisfying p(0) = 0 and

tr(p(xi)− p(x1)) = αi − α1, (i = 2, . . . , t− 1)

Fix ui such that tr(ui) = αi −α1, i = 2, . . . , t− 1. Then this is equivalent
with

p(xi)− p(x1) = ui + hi, i = 2, . . . , t− 1.

Here the hi vary through the hyperplane H = Ker(tr). We see by La-
grange interpolation that the polynomial p(X) affording the operation above
is uniquely determined by the right side, the ui + hi. Its highest coefficient
at−2 is the same as that of the uniquely determined

polynomial g(X) of degree ≤ t−2 affording g(x1) = 0, g(xi) = ui +hi, i =
2, . . . , t− 1. This highest coefficient is therefore

at−2 =
t−1∑
i=2

ui + hi

yi

.
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Here we have used the terminology of Definition 6. We will be done if we
can show that φ(at−2) attains each value ∈ IFq the same number of times. As
the ui and xi are constants, we may replace at−2 by

∑t−1
i=2

hi

yi
. Observe that

each 1
yi
· H is a hyperplane. So our claim is equivalent with the statement

that the 1
yi
· H do not all coincide with the kernel of φ. This is guaranteed

by the definition of (t− 1)−goodness.
This was the hardest case. If we consider sets of t columns less than t− 1 of
which belong to A, then proceeding along the same lines as above we see that
Lagrange interpolation will guarantee that the coeffient at−2 of p(X) attains
each value ∈ F the same number of times. The properties of C guarantee
then that the defining property of OA is satisfied.
So we have extended our orthogonal array A(t) by e columns. In order to
prove that the dual code of this extension has the desired properties it re-
mains to show that each row with all zero entries in A must be all zero in
the extension, too. This is guaranteed by the assumption that U ⊆ Ker(φ).

Natural candidates for applications of Theorem 7 are the cases t = q + 1.
We have ρ0(q + 1) = n, ρ0(q) = ρ0(q − 1) = 0. In order to apply Theorem 7
in these cases we need information on the q−good 1-dimensional subspaces.

Lemma 4 Let F = IFqn as before.

1. If q = 2, then all 1-dimensional subspaces of F are 2-bad.

2. If q = 3, n odd, then all 1-dimensional subspaces of F are 3-bad.

3. If q = 3, n even, then P = α · IF3 is 3-good if and only if α ∈ F is a
nonsquare.

Proof: The case q = 2 is an easy exercise. Let q = 3 and x1, x2, x3 ∈ F
different elements. Assume y−1

2 IFq is bad. Additive constants don’t change
the yi, so we may assume x0 = 0. A multiplicative constant λ changes
P = αIFq into λ−2IFq. So αIFq is 3 − bad if and only if λ2αIFq is for some
0 6= λ ∈ F, and we can therefore assume without restriction x2 = 1. Then
y2 = 1 − x3, y3 = x3(x3 − 1). We must have y2 = ±y3. If y3 = −y2, then
x3 = 1 = x2, contradiction. So y3 = y2. It follows x3 = −1. We conclude
that P = αIF3 = IF3. Applying the remark above we see that P = αIF3 is
3-bad if and only if either α or −α is a square in F. If n is odd, this will
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always be the case. If n is even, then the 1-dimensional subspaces generated
by nonsquares will be 3-good.

4.1 The case q = 3, t = 4.

Theorem 7 and Lemma 4 show that in case q = 3, n even, the corresponding
RS subfield subcodes [3n, 3n − 2n− 1, 5] can be lengthened. Let us consider
small even values of n more closely:
Let at first q = 3, n = 2. As t = 4 > n, our method cannot yield more
than e = 2. Consider IF9 as extension over IF3 with generator θ and defining
equation θ2 = −θ + 1. Then H = Ker(tr) = θ2IF3. Consider the linear
functionals φ1, φ2, where φ1(1) = 1, φ1(θ) = 0, φ2(1) = 1, φ2(θ) = −1. Then
Ker(φ1) = θIF3 = 1

θ
H and Ker(φ2) = (θ + 1)IF3 = θ3IF3 = θH. As θ and

1
θ

are nonsquares, we can apply the foregoing theorem to the RS subfield
subcode with parameters [9, 4, 5] and obtain [11, 6, 5]. This is of course the
truncation of the ternary Golay code.
Let now q = 3, n = 4. We use p(X) = X4 + X − 1 as the irreducible
polynomial generating IF81|IF3. The element Θ = X + (p(X)) generates the
multiplicative group of F = IF81. We have H = Ker(tr) =< Θ, Θ2, Θ3 > .
Write the linear functionals φ : F −→ IF3 in the form φ = φx, where φx(y) =
tr(x · y). Then tr = φ1. In general Ker(φx) = 1

x
H. Thus φx is 3-good if and

only if x is a nonsquare. Consider the 3-good linear functionals φx, where
x ∈ {Θ, Θ3, Θ7, Θ9, Θ19}. Express these linear functionals as the columns of
a matrix, with respect to the basis 1, Θ, Θ2, Θ3. The matrix is

0 0 −1 0 1
0 1 1 1 0
0 0 0 1 −1
1 0 1 1 −1

The rows of this matrix generate the code (1,−1,−1,−1,−1)⊥, which by
Delsarte theory is therefore an orthogonal array of strength 4. It follows that
we can apply the preceding theorem with e = 5. Higher values of e are clearly
impossible. We conclude that we get a 5-step extension of the Reed-Solomon
subfield code. This yields a ternary code with parameters

[86, 77, 5].
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An exhaustive computer search shows that the ternary RS subfield codes
[9, 4, 5] and [81, 72, 5] cannot be extended by more than 2 and 5 columns,
respectively.

4.2 The case q = 3, t = 5.

Let q = 3, t = 5, n > 2. We know ρ0(3) = 0, ρ0(4) = ρ0(5) = n. Consider
the simple array A0 = A0(5), whose rows are indexed by pairs (p(X), z),
where z ∈ IF3, p(X) = aX4 + bX2 + cX, a, b, c ∈ F. We want to extend A0

by columns, indexed by linear functionals φ : F × F −→ IF3 such that the
entry in row (p(X), z) is φ(a, b). Each such linear functional can be written
as a trace-form φ = φα,β, where

φα,β(x, y) = tr(α · x + β · y).

Theorem 8 Let q = 3, t = 5, n > 2. Extend the simple array A0(5) by
columns φi = φαi,βi

, where the entry in row (aX4 + bX2 + cX, z) and column
φ is φ(a, b). Assume the φi form a linear orthogonal array of length e and
strength 5.
The extended array forms a (linear) orthogonal array of strength 5 if and
only if the following conditions are satisfied:

1. If φα,β is a column, then (α, β) cannot be expressed in the form (α, β) =
(−xy(x2 + y2), xy) with x, y ∈ F.

2. For every pair φα,β, φα′,β′ of different columns neither (α + α′, β + β′)
nor (α − α′, β − β′) can be written in the form (x4, x2) or (−x4,−x2)
for some x ∈ F.

If this is satisfied, then the dual of the extended array is an e−step length-
ening of A(5)⊥, and this is a ternary linear code with parameters

[3n + e, 3n − {3n + 1}+ e, 6].

As the proof of this Theorem is rather involved we chose to relegate
it to an appendix. Let us consider applications of Theorem 8. We start
from n = 2, although this is not covered by the Theorem. In this case
ρ0(5) = 3 < 4 = 2n. A computer program produced the ternary Golay
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code as an extension of our RS subfield code. In case n = 3 the computer
found a representation of the ternary Golay code satisfying the conditions
of Theorem 8, so that we could use it to construct a 12-step lengthening of
the RS subfield code. This is a ternary code with parameters [39, 29, 6]. The
check matrix is given in the appendix.
In the case n = 4 our RS subfield code has parameters [81, 68, 6]. We use the
polynomial X4 + X − 1 to generate the field F = IF81. The image of X is
mapped to a generator u of the multiplicative group of F. In the following
table we give nineteen pairs (α, β) of field elements. Here entry i stands
for ui, symbol ∗ stands for 0. It can be checked that this set satisfies the
conditions of Theorem 8 and therefore yields a ternary code [100, 87, 6].

α * * * * 80 80 3 3 79 79 2 2 17 1 53 9 69 27 50
β 3 79 17 1 * 54 * 8 38 73 * 50 4 * 46 51 25 40 49

5 Small parameter values

We consider the cases (q = 2, n = 7, 8), (q = 3, n = 2, 3, 4) and
(q = 4, n = 3). The reason for this choice is that we get a large number
of new code parameters and the codes we get fall in the range covered by
the data base on minimum distances of linear codes. Generally we give the
complete list of the values of ρ0(t). We also include the parameters of the
codes obtained by lengthening A⊥, by application of Theorem 3, Corollary 1,
Theorem 7 or by computer calculations. Entries marked new in the tables
are record-breaking. A mark opt means that the maximal value of d had
been known before and we reproduce it. opt,new means that our value of d
is new and maximal. A mark best known means that we obtain the largest
value of d which is hitherto known. Mark comp indicates that computer
work was needed to find the extension of the Reed-Solomon subfield code.
The computer searches leading to lengthenings of the RS subfield codes were
based on extensions of the duals. Some generator matrices of computer-
generated codes are given in the appendix. The complete information is to
be found in the first author’s home page [2]. The values of ρ0(t) are obtained
by repeated use of Corollary 2. We do not give values for t > qn−qn−1 as they
are easily calculated and the resulting codes are not interesting (they have
dimension 1). We do not give complete information in case q = 2, n < 8. The
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codes we get in this range are described in the following subsection. Some of
the less interesting values of t are omitted in the tables, but generally only
when ρ0(t) − ρ0(t − 1) = n and when it is clear why this is the case. The
values t > 88 in case q = 2, n = 8 have also been omitted.

5.1 Case q = 2, n < 8.

Consider first n = 5, t = 12. We have ρ0(12) = ρ0(11) = 30. This leads to
a Reed Solomon subfield code [32, 6, 13]. Application of Corollary 1 leads to
a code [37, 11, 13]. These parameters are known. A computer run yielded
another extension step. This is a code [38, 12, 13]. An overall parity check
finally yields a code

[39, 12, 14],

which is new and optimal. A generator matrix of the code [38, 12, 13] will be
given in the appendix.
A similar situation occurs in case n = 6, t = 8. Here ρ0(8) = ρ0(7) = 18.
This gives us parameters [64, 39, 9]. Corollary 1 yields a 6-step lengthening.
A computer-program produced a lengthening by 7. An overall parity check
yields a code

[72, 46, 10].

Consider n = 7, t = 6. We have ρ0(6) = ρ0(5) = 14. Using Corollary 1 with
a (trivial) code [8, 1, 7] we get a binary code [136, 114, 7]. An overall parity-
check yields a [137, 114, 8], which is new and optimal. Again we can do better
with the help of a computer- program. It produced a code [154, 132, 7]. As
before we obtain a binary code with parameters

[155, 132, 8],

which is new and optimal.
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5.2 Case q = 2, n = 7.

t ρ0(t) codes remarks

2 0 [255,247,3] opt
3 7 [128,120,4] opt
4 7 [139,124,5] best known
5 14 [128,113,6] opt
6 14 [154,132,7] opt,new (comp)
7 21 [128,106,8] opt
8 21 [135,106,9] best known
9 28 [128,99,10] best known
10 28 [135,99,11] best known
11 35 [128,92,12] best known
12 35 [135,92,13] best known
13 42 [128,85,14] best known
14 42 [135,85,15] best known
15 49 [128,78,16] best known
16 49 [135,78,17] best known
17 56 [128,71,18]
18 63 [128,71,19]
19 70 [128,71,20] best known
20 70 [135,71,21] best known
21 77 [128,64,22] best known
22 77 [135,64,23] best known
23 84 [128,57,24] best known
24 84 [135,57,25] best known
25 91 [128,50,26]
26 98 [128,50,27]
27 105 [128,50,28] best known
28 105 [135,50,29] best known
29 112 [128,43,30]
30 112 [135,43,31]
31 119 [128,36,32]
32 119 [135,36,33]
33 126 [128,29,34]
34 133
35 140
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t ρ0(t) codes remarks

36 147
43 196 [128,29,44] best known
44 196 [135,29,45] best known
45 203 [128,22,46]
46 210
47 217 [128,22,48] best known
48 217 [135,22,49] best known
49 224 [128,15,50]
50 231
51 238
52 245
53 252
54 259
55 266 [128,15,56] opt
56 266 [135,15,57] best known
57 273 [128,8,58]
58 280
59 287
60 294
61 301
62 308
63 315 [128,8,64] opt
64 315 [135,8,65] opt
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5.3 Case q = 2, n = 8.

t ρ0(t) codes remarks

2 0 [511,502,3] opt
3 8 [256,247,4] opt
4 8 [273,256,5]
5 16 [256,239,6] opt
6 16 [265,240,7] new
7 24 [256,231,8] opt
8 24 [265,232,9]
9 32 [256,223,10] opt
10 32 [264,223,11] new
11 40 [256,215,12] best known
12 40 [264,215,13]
13 48 [256,207,14] best known
14 48 [264,207,15] new
15 56 [256,199,16] best known
16 56 [264,199,17]
17 64 [256,191,18] best known
18 68 [260,191,19] new
19 76 [256,187,20] best known
20 76 [264,187,21] new
21 84 [256,179,22] best known
22 84 [264,179,23] new
23 92 [256,171,24] best known
24 92 [264,171,25] new
25 100 [256,163,26] best known
26 100 [264,163,27] new
27 108 [256,155,28] best known
28 108 [264,155,29] new
29 116 [256,147,30] best known
30 116 [264,147,31] new
31 124 [256,139,32] best known
32 124 [264,139,33]
33 132 [256,131,34]
34 140 [256,131,35]
35 148 [256,131,36]
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t ρ0(t) codes remarks

36 156 [256,131,37]
37 164 [256,131,38] best known
38 164 [264,131,39] new
39 172 [256,123,40] best known
40 172 [264,123,41] new
41 180 [256,115,42]
42 188 [256,115,43]
43 196 [256,115,44] best known
44 196 [264,115,45] new
45 204 [256,107,46] best known
46 204 [264,107,47] new
47 212 [256,99,48] best known
48 212 [264,99,49] new
49 220 [256,91,50]
50 228 [256,91,51]
51 236 [256,91,52] best known
52 240 [260,91,53] new
53 248 [256,87,54] best known
54 248 [264,87,55] new
55 256 [256,79,56] best known
56 256 [264,79,57]
57 264 [256,71,58]
58 272 [256,71,59]
59 280 [256,71,60] best known
60 280 [264,71,61] new
61 288 [256,63,62]
62 288 [264,63,63]
63 296 [256,55,64]
64 296 [264,55,65]
65 304 [256,47,66]
66 312 [256,47,67]
85 464 [256,47,86] best known
86 470 [258,47,87] new
87 478 [256,45,88] best known
88 478 [264,45,89]
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5.4 Case q = 3, n = 2.

t ρ0(t) codes remarks

2 0 [13,10,3] opt
3 0 [11,6,4]
4 2 [11,6,5] opt
5 3 [12,6,6] Golay (comp)
6 3 [11,3,7] opt

5.5 Case q = 3, n = 3.

t ρ0(t) codes remarks

2 0 [40,36,3] opt
3 0 [31,24,4] best known
4 3 [27,20,5] opt
5 3 [39,29,6] opt,new (comp)
6 3 [39,26,7] new (comp)
7 6 [27,14,8] best known
8 6 [30,14,9]
9 6 [30,11,10]
10 9 [27,8,11]
13 18 [27,8,14] opt
14 20 [28,8,15] opt
15 20 [30,7,16] opt,new
17 26 [27,4,18] opt
18 26 [30,4,19] opt
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5.6 Case q = 3, n = 4.

t ρ0(t) codes remarks

2 0 [121,116,3] opt
3 0 [85,76,4] best known
4 4 [86,77,5] opt,new
5 4 [100,87,6] new (comp)
6 4 [101,84,7] new (comp)
7 8 [83,66,8] new(comp)
8 8 [85,64,9] new
9 8 [85,60,10] new
10 12 [81,56,11] best known
11 14 [83,56,12] new
12 14 [85,54,13] new
13 18 [81,50,14] best known
14 18 [85,50,15] new
15 18 [85,46,16] new
16 22 [81,42,17] best known
17 22 [85,42,18] best known
18 22 [85,38,19] best known
19 26 [81,34,20]
20 30 [81,34,21] best known
21 32 [83,34,22] new
22 36 [81,32,23] best known
23 36 [85,32,24] new
24 36 [85,28,25] best known
25 40 [81,24,26] best known
26 40 [85,24,27]
27 40 [85,20,28]
28 44 [81,16,29]
29 48 [81,16,30]
30 52 [81,16,31]
31 56 [81,16,32]
32 60 [81,16,33]
33 64 [81,16,34]
34 68 [81,16,35]
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t ρ0(t) codes remarks

35 72 [81,16,36]
36 76 [81,16,37]
37 80 [81,16,38]
38 84 [81,16,39]
39 88 [81,16,40]
40 92 [81,16,41] best known
41 95 [82,16,42] best known
42 95 [85,15,43] new
43 99 [81,11,44]
44 103 [81,11,45] best known
45 103 [85,11,46] new
46 107 [81,7,47]
47 111 [81,7,48]
48 115 [81,7,49]
49 119 [81,7,50]
50 123 [81,7,51] opt
51 125 [83,7,52] opt,new
52 129 [81,5,53]
53 133 [81,5,54] opt
54 133 [85,5,55] opt
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5.7 Case q = 4, n = 3.

t ρ0(t) codes remarks

2 0 [85,81,3] opt
3 0 [70,63,4] opt
4 0 [126,116,5] new (comp)
5 3 [64,54,6] opt
6 3 [70,57,7] new (comp)
7 3 [67,51,8] best known
8 3 [67,48,9] new
9 6 [64,45,10]
10 6 [67,45,11] new
11 6 [67,42,12] new
12 6 [67,39,13] new
13 9 [64,36,14] best known
14 9 [67,36,15] new
15 9 [67,33,16] best known
16 9 [67,30,17] best known
17 12 [64,27,18]
18 15 [64,27,19]
19 18 [64,27,20]
20 21 [64,27,21]
21 24 [64,27,22] best known
22 26 [65,27,23] new
23 26 [67,26,24] new
24 26 [67,23,25] new
25 29 [64,20,26]
26 32 [64,20,27]
27 32 [67,20,28] new
28 32 [67,17,29] best known
29 35 [64,14,30]
30 38 [64,14,31] best known
31 38 [67,14,32]
32 38 [67,11,33]
33 41 [64,8,34]
34 44 [64,8,35]
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t ρ0(t) codes remarks

35 47 [64,8,36]
36 50 [64,8,37]
37 53 [64,8,38]
38 56 [64,8,39]
39 59 [64,8,40]
40 62 [64,8,41]
41 65 [64,8,42]
42 68 [64,8,43] opt
43 70 [65,8,44] opt
44 70 [67,7,45] new
45 73 [64,4,46]
46 76 [64,4,47]
47 79 [64,4,48] opt
48 79 [67,4,49] opt

In [7] a quaternary code [65, 8, 44] was constructed from scratch and used
to obtain good binary codes via concatenation and other constructions. Here
we see that a quaternary [65, 8, 44] can be obtained by applying Theorem 3
to the RS subfield code [64, 7, 43].

6 Codes obtained by extension

The projection of an [n + 1, k, d]-code onto all but one of its coordinates
(custumarily called truncation in coding theory) obvious yields [n, k, d−1].
The inverse process, if possible, goes under the name of extension. We use
a basic fact on extension known as construction X ([9], p.581/582, which we
use in the following form

Theorem 9 (construction X) Let C be a q-ary code with parameters [n, k, d]
and D a subcode of C of codimension κ and minimum distance ≥ d + δ for
some δ > 0. If there is a code with parameters [e, κ, δ] then there is a code C̃
with parameters [n + e, k, d + δ], which projects onto C.

It is clear that the projection (truncation) onto the n first coordinates
leads back to C from C̃. The easiest application of this occurs in the binary
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case when d is odd. We have e = 1 then. This operation is known as adding a
parity check. Let us apply the procedure to our RS subfield codes. If we use
the codes A(t)⊥ and their subcodes A(t+1)⊥ we obtain another explanation
for most of our lengthening results: the lengthenings of A(t + 1)⊥ can be
seen as extensions of A(t)⊥. The details are left to the reader.
The tables in section 5 provide us with a large number of codes contained in
each other. In each such case we can use Theorem 9 and obtain an extension.
The auxiliary codes [e, κ, δ] needed to apply Theorem 9 are taken from the
data base [3]. In the following tables we list examples of this construction,
which led to new code parameters.
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6.1 The binary case

pair of codes auxiliary code result

[67, 18, 24] ⊃ [64, 7, 32] [23, 11, 8] [90, 18, 32]
[129, 79, 15] ⊃ [128, 71, 20] [13, 8, 4] [142, 79, 19]
[130, 80, 15] ⊃ [128, 71, 20] [14, 9, 4] [144, 80, 19]
[131, 81, 15] ⊃ [128, 71, 20] [15, 10, 4] [146, 81, 19]
[129, 58, 23] ⊃ [128, 50, 28] [13, 8, 4] [142, 58, 27]
[130, 59, 23] ⊃ [128, 50, 28] [14, 9, 4] [144, 59, 27]
[131, 60, 23] ⊃ [128, 50, 28] [15, 10, 4] [146, 60, 27]
[128, 36, 32] ⊃ [128, 29, 44] [19, 7, 8] [147, 36, 40]
[128, 36, 32] ⊃ [128, 29, 44] [24, 7, 10] [152, 36, 42]
[128, 36, 32] ⊃ [128, 29, 44] [27, 7, 12] [155, 36, 44]
[130, 31, 33] ⊃ [128, 29, 44] [12, 2, 8] [142, 31, 41]
[129, 30, 33] ⊃ [128, 29, 44] [11, 1, 11] [140, 30, 44]
[130, 31, 33] ⊃ [128, 29, 44] [15, 2, 10] [145, 31, 43]
[129, 23, 45] ⊃ [128, 22, 48] [3, 1, 3] [132, 23, 48]
[130, 24, 45] ⊃ [128, 22, 48] [4, 2, 3] [134, 24, 48]
[132, 23, 48] ⊃ [128, 15, 49] [8, 8, 1] [140, 23, 49]
[134, 24, 48] ⊃ [128, 15, 49] [9, 9, 1] [143, 24, 49]
[130, 17, 49] ⊃ [128, 15, 53] [6, 2, 4] [136, 17, 53]
[130, 17, 49] ⊃ [128, 15, 55] [9, 2, 6] [139, 17, 55]
[128, 29, 44] ⊃ [128, 15, 56] [34, 14, 10] [162, 29, 54]
[130, 24, 45] ⊃ [128, 15, 56] [21, 9, 8] [151, 24, 53]
[131, 25, 45] ⊃ [128, 15, 56] [22, 10, 8] [153, 25, 53]
[132, 26, 45] ⊃ [128, 15, 56] [23, 11, 8] [155, 26, 53]
[133, 27, 45] ⊃ [128, 15, 56] [24, 12, 8] [157, 27, 53]
[128, 8, 64] ⊃ [128, 1, 127] [27, 7, 12] [155, 8, 76]
[128, 8, 64] ⊃ [128, 1, 127] [40, 7, 18] [168, 8, 82]
[128, 8, 64] ⊃ [128, 1, 127] [43, 7, 20] [171, 8, 84]
[128, 8, 64] ⊃ [128, 1, 127] [47, 7, 22] [175, 8, 86]
[128, 8, 64] ⊃ [128, 1, 127] [50, 7, 24] [178, 8, 88]

The first code needs explanation: we are in case q = 2, n = 6. The
code A(22)⊥ has parameters [64, 16, 23] and possesses a 2-step lengthening.
A parity check yields a code C with parameters [67, 18, 24]. As A(31)⊥ has
parameters [64, 7, 32] we see that C has a subcode of codimension 11 and
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minimum distance ≥ 32. The binary Golay code shows that there is a binary
code [23, 11, 8]. Application of Theorem 9 yields a code with the new param-
eters [90, 18, 32].
Also, in the construction of the code [140, 23, 49] we use the code [132, 23, 48]
construct two rows earlier, which by construction contains the code [128, 22, 48].
This latter code contains [128, 15, 49]. We are now in a position to apply The-
orem 9. Apparently the 8-dimensional codes are known ( see [6]). We obtain
here an effortless conceptual construction.
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6.2 The ternary case

pair of codes auxiliary code result

[28, 8, 15] ⊃ [27, 4, 18] [5, 4, 2] [33, 8, 17]
[81, 68, 6] ⊃ [81, 64, 8] [5, 4, 2] [86, 68, 8]
[81, 64, 8] ⊃ [81, 56, 11] [11, 8, 3] [92, 64, 11]
[81, 60, 9] ⊃ [81, 56, 11] [5, 4, 2] [86, 60, 11]
[83, 57, 11] ⊃ [81, 54, 12] [3, 3, 1] [86, 57, 12]
[81, 60, 9] ⊃ [81, 54, 12] [9, 6, 3] [90, 60, 12]
[82, 61, 9] ⊃ [81, 54, 12] [10, 7, 3] [92, 61, 12]
[81, 56, 11] ⊃ [81, 50, 14] [7, 6, 2] [88, 56, 13]
[81, 56, 11] ⊃ [81, 50, 14] [9, 6, 3] [90, 56, 14]
[81, 54, 12] ⊃ [81, 50, 14] [5, 4, 2] [86, 54, 14]
[82, 55, 12] ⊃ [81, 50, 14] [6, 5, 2] [88, 55, 14]
[81, 50, 14] ⊃ [81, 46, 15] [4, 4, 1] [85, 50, 15]
[82, 51, 13] ⊃ [81, 46, 15] [6, 5, 2] [88, 51, 15]
[81, 50, 14] ⊃ [81, 42, 17] [9, 8, 2] [90, 50, 16]
[81, 50, 14] ⊃ [81, 42, 17] [11, 8, 3] [92, 50, 17]
[81, 46, 15] ⊃ [81, 42, 17] [5, 4, 2] [86, 46, 17]
[82, 35, 19] ⊃ [81, 34, 21] [2, 1, 2] [84, 35, 21]
[81, 38, 18] ⊃ [81, 32, 23] [11, 6, 5] [92, 38, 23]
[81, 34, 21] ⊃ [81, 32, 23] [3, 2, 2] [84, 34, 23]
[81, 24, 26] ⊃ [81, 16, 41] [28, 8, 15] [109, 24, 41]
[82, 21, 27] ⊃ [81, 16, 41] [20, 5, 12] [102, 21, 39]
[82, 12, 43] ⊃ [81, 11, 45] [2, 1, 2] [84, 12, 45]
[83, 13, 43] ⊃ [81, 11, 45] [3, 2, 2] [86, 13, 45]
[84, 12, 45] ⊃ [81, 7, 51] [6, 5, 2] [90, 12, 47]
[84, 12, 45] ⊃ [81, 7, 51] [11, 5, 6] [95, 12, 51]
[86, 13, 45] ⊃ [81, 7, 51] [12, 6, 6] [98, 13, 51]
[81, 16, 41] ⊃ [81, 11, 45] [9, 5, 4] [90, 16, 45]
[81, 15, 42] ⊃ [81, 11, 45] [5, 4, 2] [86, 15, 44]
[81, 15, 42] ⊃ [81, 11, 45] [7, 4, 3] [88, 15, 45]
[81, 15, 42] ⊃ [81, 7, 51] [20, 8, 9] [101, 15, 51]
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pair of codes auxiliary code result

[81, 15, 42] ⊃ [81, 5, 54] [28, 10, 12] [109, 15, 54]
[82, 16, 42] ⊃ [81, 11, 45] [6, 5, 2] [88, 16, 44]
[82, 16, 42] ⊃ [81, 7, 51] [17, 9, 6] [99, 16, 48]
[82, 16, 42] ⊃ [81, 7, 51] [21, 9, 9] [103, 16, 51]
[82, 16, 42] ⊃ [81, 5, 54] [29, 11, 12] [111, 16, 54]
[82, 12, 43] ⊃ [81, 7, 51] [11, 5, 6] [93, 12, 49]
[83, 13, 43] ⊃ [81, 7, 51] [12, 6, 6] [95, 13, 49]
[81, 11, 45] ⊃ [81, 7, 51] [5, 4, 2] [86, 11, 47]
[81, 11, 45] ⊃ [81, 7, 51] [10, 4, 6] [91, 11, 51]
[81, 11, 45] ⊃ [81, 5, 54] [15, 6, 7] [96, 11, 52]
[81, 11, 45] ⊃ [81, 5, 54] [18, 6, 9] [99, 11, 54]
[81, 7, 51] ⊃ [81, 5, 54] [4, 2, 3] [85, 7, 54]
[81, 7, 51] ⊃ [81, 1, 80] [26, 6, 15] [107, 7, 66]
[81, 7, 51] ⊃ [81, 1, 80] [40, 6, 24] [121, 7, 75]
[81, 7, 51] ⊃ [81, 1, 80] [44, 6, 27] [125, 7, 78]

Observe that code [86, 13, 45] is not of independent interest here as its
parameters are implied by the [88, 15, 45], but we use the code three rows
below to construct [98, 13, 51]. The parameters [85, 7, 54] improve on those of
our code [83, 7, 52] constructed in subsection 5.6.
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6.3 The quaternary case

pair of codes auxiliary code result

[64, 48, 8] ⊃ [64, 45, 10] [4, 3, 2] [68, 48, 10]
[64, 42, 11] ⊃ [64, 36, 14] [9, 6, 3] [73, 42, 14]
[64, 39, 12] ⊃ [64, 36, 14] [4, 3, 2] [68, 39, 14]
[64, 36, 14] ⊃ [64, 27, 22] [18, 9, 8] [82, 36, 22]
[64, 33, 15] ⊃ [64, 27, 22] [12, 6, 6] [76, 33, 21]
[65, 31, 16] ⊃ [64, 27, 22] [10, 4, 6] [75, 31, 22]
[65, 28, 17] ⊃ [64, 27, 22] [5, 1, 5] [70, 28, 22]
[64, 33, 15] ⊃ [64, 27, 22] [14, 6, 7] [78, 33, 22]
[64, 33, 15] ⊃ [64, 26, 23] [16, 7, 8] [80, 33, 23]
[64, 30, 16] ⊃ [64, 27, 22] [9, 3, 6] [73, 30, 22]
[64, 30, 16] ⊃ [64, 26, 23] [12, 4, 7] [76, 30, 23]
[65, 31, 16] ⊃ [64, 27, 22] [10, 4, 6] [75, 31, 22]
[64, 27, 22] ⊃ [64, 23, 24] [5, 4, 2] [69, 27, 24]
[64, 26, 23] ⊃ [64, 20, 27] [10, 6, 4] [74, 26, 27]
[65, 27, 23] ⊃ [64, 20, 27] [11, 7, 4] [76, 27, 27]
[64, 23, 24] ⊃ [64, 20, 27] [5, 3, 3] [69, 23, 27]
[65, 24, 24] ⊃ [64, 20, 27] [5, 4, 2] [70, 24, 26]
[64, 20, 27] ⊃ [64, 14, 31] [7, 6, 2] [71, 20, 29]
[64, 20, 27] ⊃ [64, 14, 31] [10, 6, 4] [74, 20, 31]
[64, 17, 28] ⊃ [64, 14, 31] [5, 3, 3] [69, 17, 31]
[65, 18, 28] ⊃ [64, 14, 31] [5, 4, 2] [70, 18, 30]
[64, 8, 43] ⊃ [64, 4, 48] [9, 4, 5] [73, 8, 48]
[64, 7, 44] ⊃ [64, 4, 48] [6, 3, 4] [70, 7, 48]
[65, 8, 44] ⊃ [64, 4, 48] [5, 4, 2] [70, 8, 46]
[65, 8, 44] ⊃ [64, 1, 63] [32, 7, 19] [97, 8, 63]

7 The dual codes

In a number of cases the duals of the RS subfield codes and their extensions
have large minimum distances and therefore yield good codes. Most of the
results presented in this section rely on computer calculations.
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7.1 The ternary case

The RS subfield code [81, 72, 5] has dual distance 48. The ternary parameters
[81, 9, 48] are new. Truncation of this code ( projection onto the first 72 co-
ordinates produces an [72, 9, 40]. The code [86, 77, 5] obtained by lengthening
in subsection 4.1 has dual distance 50. This leads to the new parameters
[86, 9, 50]. The code [82, 16, 42] obtained by lengthening in section 5 has dual
distance 8 and therefore yields the new parameters [82, 66, 8]. Another new
parameter is obtained by applying construction Y1 ([9],p.592), which we use
in the following form:

Theorem 10 (construction Y1) A linear code [n, k, d] with dual distance
d′ contains a subcode [n− d′, k − d′ + 1,≥ d].

If we apply this to our code [82, 16, 42] the new parameters [74, 9, 42] are
obtained.
The duals of the chain [81, 11, 45] ⊂ [81, 15, 42] ⊂ [81, 16, 41] form a chain
of codes [81, 65, 8] ⊂ [81, 66, 7] ⊂ [81, 70, 6]. All these parameters are new,
the last one is optimal. Application of Theorem 9 with the obvious auxiliary
codes gives us the following codes: [85, 70, 7], [87, 70, 8], [82, 66, 8]. The last
of these parameters has been constructed above, the others are new. We
also constructed a lengthening of the code [81, 70, 6] by computer. This code
has parameters [85, 74, 6] and is optimal. It has dual distance 46. Applica-
tion of Theorem 10 yields another construction of a code [39, 29, 6]. These
parameters had been obtained in section 5 by other means.

7.2 The quaternary case

The RS subfield code [64, 54, 6] has dual distance 32. Application of Theo-
rem 10 yields [32, 23, 6]. The code [67, 11, 33] from section 5 has dual distance
6. Its dual therefore has parameters [67, 56, 6]. We used a computer program
to lengthen this code 14 times, thus obtaining a new code [81, 70, 6]. The
dual of the chain [64, 7, 44] ⊂ [64, 8, 43] is a chain [64, 56, 5] ⊂ [64, 57, 4].
Application of Theorem 9 with [1, 1, 1] as auxiliary code yields the new and
optimal parameters [65, 57, 5].
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8 Conclusion

We have studied Reed-Solomon subfield codes. While the parameters of
these codes are at least partly implicit in the existing literature, our method
is rather streamlined and paves the way to the construction of extensions and
lengthenings of these codes. These are new. Our main interest here is in the
construction of codes improving upon the data base of parameters of binary,
ternary and quaternary codes ([3], for the binary case see also Brouwer-
Verhoeff [5]). It turns out that we are able to improve on the entries of the
data base as of november 26, 1994 in well above two percent of the cases.

A Some good codes

A.1 Generator matrix of binary code [38, 12, 13]

11110010100001111101101001100000000000
00011011100110110011011101010000000000
11010111110110001100000111001000000000
01011001111101001011101010000100000000
00101100111100011101110101000010000000
10110100001111101011010011000001000000
10001001010110000111001110000000100000
00101111011011001011110110000000010000
01111101000100001000110011000000001000
10010001111111011101011001000000000100
01101000100011100110001101000000000010
10101010010110111001111011000000000001
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A.2 Check matrix of ternary code [39, 29, 6]

111111111111111111111111111000000000000
000222111111000222222111000000000000000
021210102102021210210102021000000000000
000222111000222111000222111000000000000
000120102021222012012021222100012100101
022112121121100001112010100010001100221
000012021222201210222201210001001120102
000012021210222201201210222000101010212
022100100010121121001112112000011001122
000210201102120222120222102000000111111

A.3 Check matrix of ternary code [39, 26, 7]

100000000000020022220211000122121210100
010000000000002212121220011210200022001
001000000000001011200010221212112011122
000100000000010111122101201102212212122
000010000000002110102121111111112210002
000001000000012112111122221012120122012
000000100000020210001021011101020020022
000000010000000000011111111011001012212
000000001000011000021021210000110101221
000000000100020200112022002000001101010
000000000010000011021102102000000011120
000000000001011221121001011000000000112
000000000000101220010110201000000000001

B Proof of Theorem 8

We have to show that our extended array is an orthogonal array of strength
5. Consider a set of 5 columns of our extended array. If they all belong
to A0, then there is nothing to prove. The hardest case is when all but
one of the columns belong to A0. So let x1, x2, x3, x4 be different elements
of F, let εi ∈ IF3, i = 1, 2, 3, 4 and let φ = φα,β be one of the φi. Consider
the rows of A0 having entry εi in column xi, i = 1, 2, 3, 4. As before this is
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equivalent with tr(p(xi)−p(x1)) = εi−ε1(i = 2, 3, 4), the corresponding value
of z being uniquely determined when this condition is met. Fix elements
ui ∈ F, i = 1, 2, 3 such that tr(ui) = εi − ε1. Write p(X) = aX4 + g(X),
let hi ∈ H = Ker(tr), i = 1, 2, 3. If a ∈ F and h2, h3, h4 ∈ H are given,
then the polynomial g(X) of degree ≤ 3 is uniquely determined by Lagrange
interpolation. As the constant term is irrelevant in our situation, we may
consider the polynomial g(X) of degree ≤ 3 satisfying

g(x1) = −ax4
1, g(xi) = ui + hi − ax4

i , i = 2, 3, 4.

We have therefore

g(X) = −ax4
1

(X − x2)(X − x3)(X − x4)

(x1 − x2)(x1 − x3)(x1 − x4)
+

4∑
i=2

(ui + hi − ax4
i )

∏
j 6=i(X − xj)∏
j 6=i(xi − xj)

.

The first condition to be met is that the highest coefficient of g(X) has to
vanish, hence

a · S1 =
4∑

i=2

ui + hi

yi

.

Here yi =
∏

j 6=i(xi − xj), S1 =
∑4

i=1 x4
i /yi. It is an easy exercise to show

that indeed S1 = x1+x2+x3+x4, thus justifying the notation. The coefficient
of g(X) (and of p(X)) at X2 is then

b = aS2 −
4∑

i=2

(ui + hi)

∑
j 6=i xj

yi

.

We see that S2 =
∑4

i=1
x4

i

yi

∑
j 6=i xj =

∑
i>j xixj is indeed the second ele-

mentary symmetric function of the xi. Consider first the case S1 6= 0. We
see that the rows in question are parametrized precisely by the triples of the
hi ∈ H, i = 2, 3, 4. Our values a and b are then uniquely determined. We
have to check that the values φ(a, b) are uniformly distributed in IF3 when
the hi vary in H. As additive constants do not influence this property we
may as well consider the expression

tr(
α

S1

4∑
i=2

hi

yi

+ β(
S2

S1

4∑
i=2

hi

yi

−
∑

i

(S1 − xi)
hi

yi

).
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As this is linear in the hi, we only have to check that the expression is not
identically zero. We may therefore fix i, put hj = 0, j 6= i. We have to
show that the three corresponding linear functions : H −→ IF3 are not all
identically zero. Put

zi =
1

S1yi

{α + β(S2 − S1(S1 − xi)}, i = 2, 3, 4.

The linear function corresponding to i above will be identically zero if and
only zi · H ⊆ H. This is equivalent to zi ∈ IF3. We therefore have to show
that it is impossible that zi ∈ IF3 for all i = 2, 3, 4.
We assume first that none of the zi vanishes: consider the case that the zi

are equal and nonzero. Taking differences and using S1 6= 0 this leads to
β = (xj − x1)(xj − xl) + (xk − x1)(xk − xl) whenever {j, k, l} = {2, 3, 4}.
Taking differences again yields 0 = (x2 − x1)(x3 − x4) + (x3 − x4)(x1 +
x3 + x4) = (x3 − x4)(x2 + x3 + x4), hence x2 + x3 + x4 = 0. Putting this
back into one of the expressions above yields β = −(xj − xk)

2 = S2 when
j, k ∈ {2, 3, 4}, j 6= k. If all the zi = 1, then substituting this into z2 leads to
α = −β2, contradicting our assumption (with y = −x). Let all the zi = −1.
Then α = −β2{x1(xi − x1) − S2} for every i ∈ {2, 3, 4}. This forces x1 = 0,
hence S1 = 0, contradiction.
Let z2 = z3 = 1, z4 = −1. Consider the definition of the zi, take differences.
This yields β = (y2 − y3)/(x2 − x3) = (y2 + y4)/(x2 − x4). Comparing these
expressions yields x1 + x4 = x2 + x3, hence β = (x1 − x2)(x1 − x3), S1 =
−(x2 + x3), α = β2−β(x2−x3)

2. In particular an additive translation of the
xi will not change the values of α or β nor will it change our assumptions.
We may therefore assume x1 = 0, x2 = x, x3 = y, x4 = x + y. This leads to a
contradiction to our first condition, where x, y are linearly independent over
IF3. Case z2 = 1, z3 = z4 = −1 leads to the same situation.
So assume without restriction z2 = 0, consequently α = −βS2+βS1(S1−x2)).
Clearly then β 6= 0. This shows that z3z4 6= 0 as otherwise x2 = x3 or x2 = x4.
Then z3 = ±1 is equivalent to ±β = (x3−x1)(x3−x4), analogously for z4. If
z3 6= z4, then this yields the contradiction x3 = x4. Assume z3 = z4 = 1. Then
β = (x3−x1)(x3−x4) and β = (x4−x1)(x4−x3). Considering the difference
of these expressions yields x1 + x3 + x4 = 0. Then β = −(x3 − x1)

2, S1 =
x2, S2 = β. Substituting into the first equation yields α = −β2.
Case z2 = 0, z3 = z4 = −1 leads in an analogous fashion to β = (x3−x1)

2, α =
β2. We get contradictions to our first condition (cases y = x and y = −x,
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respectively).
So we can assume S1 = 0. It follows that (h2, h3, h4) has to be chosen such
that

∑4
i=2

ui+hi

yi
= 0. Then a ∈ F is arbitrary. Let L = {(h2, h3) | (h2

y2
+h3

y3
)y4 ∈

H. Then (h2, h3) varies over a coset of L. As φ is linear and additive constants
therefore don’t influence the property in question, we can instead consider
the expression

tr(α · a + β{aS2 +
1

(x2 − x1)(x2 − x3)
h2 +

1

(x3 − x1)(x3 − x2)
h3}).

We have to show that it varies uniformly over IF3 when a ∈ F and (h2, h3) ∈
L. Choosing h2 = h3 = 0 we see that we can assume without restriction
α = −βS2. Remains to show that tr( β

x3−x2
{ h2

x1−x2
+ h3

x3−x1
}) is not identically

zero when (h2, h3) ∈ L.
We shall use repeatedly the nondegenerate scalar product <,> given by the
trace:

< x, y >= tr(x · y)

Consider first the case when no partial sum of the xi, i = 1, 2, 3, 4 vanishes.
We shall prove that h2

x1−x2
+ h3

x3−x1
takes on every value in F when (h2, h3) ∈ L.

This forces then the contradiction β = α = 0. Consider the linear mapping
Φ : H ×H −→ F given by Φ(h2, h3) = h2

x1−x2
+ h3

x3−x1
. Clearly Φ is surjective.

We claim that the restriction of Φ to L is still surjective. If not, then we
would have Ker(Φ) ⊂ L. We have to show that this is not the case. So as-
sume the equation h2

x1−x2
+ h3

x3−x1
= 0 forces (h2

y2
+ h3

y3
)y4 ∈ H. By substituting

h3 from the first equation this yields y4h2(
1
y2
− x3−x1

(x1−x2)y3
) ∈ H, equivalently

tr(h2
x3

x2−x1
) = 0. Put H0 = H ∩ x3−x1

x1−x2
H. This has codimension 1 in H. Our

assumption is equivalent to {x3−x1

x1−x2
, x3

x1−x2
} ⊂ H⊥

0 (with respect to the scalar

product <,>), equivalently { x1

x1−x2
, x3

x1−x2
} ⊂ H⊥

0 . It is obvious that both
elements are nonzero and linearly independent over IF3. As H0 ⊂ H and
H⊥ = IF3, it follows that the element 1 must be a linear combination of these
elements. Each of the corresponding eight cases leads to either one of the xi

or a sum of two of the xi to vanish, contradiction.
So we can assume without restriction that either x1 = x2 + x3 + x4 = 0 or
x1 + x2 = x3 + x4 = 0. Consider first the former case. We have
y2 = −x2(x2 − x3)

2, y3 = −x3(x2 − x3)
2, y4 = −(y2 + y3), S2 = −(x2 − x3)

2.
Moreover L = {(h2, h3) | hi ∈ H, x3

x2
h2 + x2

x3
h3 ∈ H}.
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Put H0 = H ∩ x2

x3
H. Then h2 ∈ H0 if and only if (h2, 0) ∈ L. Our assump-

tion yields then tr( β
x2(x3−x2)

h2) = 0, or {x3

x2
, β

x2(x3−x2)
} ⊂ H⊥

0 . None of these
elements is zero. It follows that either they are linearly dependent or 1 is a
linear combination of the two. Each of the corresponding cases leads to a
contradiction. As an example, consider the case of equality. This is equiva-
lent to β = x3(x3 − x2). Going back to the original assumption we see that
this means: if tr(x3

x2
h2 + x2

x3
h3) = 0, then tr(x3

x2
h2) = 0 = tr(x2

x3
h3). This is

impossible for dimensional reasons. As another example consider the case
1 = x3

x2
+ β

x2(x3−x2)
. It follows β = −(x2 − x3)

2, α = −(x3 − x2)
4. This con-

tradicts our first condition. All the contradictions arise in one of these two
ways.
The final case is x1 + x2 = x3 + x4 = 0. Put x = x1, y = x3. Then
y2 = x(x + y)(x − y), y3 = y(x + y)(x − y) = −y4 and S2 = −(x2 + y2).
We have L = H0 × H, where H0 = H ∩ x

y
H. The assumption says that for

h2 ∈ H0, h3 ∈ H we have tr( β
x+y

{h2

x
+ h3

x−y
}) = 0. As h3 varies through H we

must have β
x2−y2 ∈ IF3. As certainly β 6= 0, it follows β = ±(x2 − y2), α =

±(x4 − y4). This is excluded by our first condition, with x + y and x− y in
the roles of x and y, respectively.
Consider the case that three of our five columns, indexed x1, x2, x3, belong
to A0. Proceeding like in the former case and with analogous notation we see
that the highest coefficient a of F is arbitrary and that

b = −a
3∑

i=1

x4
i

yi

+
3∑

i=2

(ui + hi)/yi.

It is easy to see that
∑3

i=1
x4

i

yi
= S2

1 − S2. Let the remaining two of the set of
five columns under consideration be indexed by φα,β and φα′,β′ .
Let us first make sure that φα,β(a, b) is uniformly distributed in IF3 when
a, h2, h3 vary through F, H and H, respectively. As before it suffices to con-
sider the expression

tr(a(α− βS2
1 + βS2)) + tr(βh2/y2) + tr(βh3/y3).

Assume this expression is identically zero. Putting h2 = h3 = 0 it follows
α = βS2

1 − βS2. Moreover β
y2

H = β
y3

H = H. This forces S1 = x1 + x2 + x3 =

0, S2 = −(x1 − x2)
2 = y2 and β = ±y2. We get the usual contradiction.

Assume finally (φα,β(a, b), φα′,β′(a, b)) is not surjective when a varies through
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F, and h2, h3 through H. It follows that either φα,β(a, b) = φα′,β′(a, b) for every
(a, h2, h3) or φα,β(a, b) = −φα′,β′(a, b) for every (a, h2, h3). This is excluded
by our second condition.
If finally less than three of our five columns belong to A, then it is clear that
(a, b) varies uniformly over F × F. The proof is complete.
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