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Abstract

We construct a large number of record-breaking binary, ternary
and quaternary codes. Our methods involve the study of BCH-codes
over larger fields, concatenation, construction X and variants of the
Griesmer construction (residual codes).

1 Review of the theory

Let IFq be the ground field, F = IFq2 . Denote the interval {i, i + 1, . . . , j} ⊂
ZZ/(q2−1)ZZ by [i, j]. Let A = [i, j] ⊂ ZZ/(q2−1)ZZ. Interval A determines a
(primitive) BCH-code C(A) of length q2−1 and minimum distance ≥| A | +1.
The dimension of C(A) is determined with the help of cyclotomic cosets. The
cyclotomic coset containing i ∈ ZZ/(q2 − 1)ZZ is Z(i) = {i, qi} ⊂ ZZ/(q2 −
1)ZZ. We have | Z(i) |= 1 if and only if (q + 1) | i, | Z(i) |= 2 otherwise.
ZZ/(q2 − 1)ZZ is the disjoint union of ¿the different cyclotomic cosets. The
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dimension of C(A) is the sum of the cardinalities of the cyclotomic cosets,
which intersect A trivially.

2 Tools

Aside of concatenation we also make use of construction X and of a variant
of the Griesmer mechanism. We record construction X for linear codes (see
[7]) in the following form:

Theorem 1 (construction X) Let C1 ⊃ C2 be q−ary linear codes with pa-
rameters [n, k + κ, d] and [n, k, d + δ], respectively. If there is a code [e, κ, δ],
then a code [n + e, k + κ, d + δ] can be constructed as a lengthening of C1.

We come to the Griesmer mechanism: Let C1 be a q-ary code [n, k, d]
with basis {v1, . . . , vk}, where wt(v1) = d. Consider the code generated by
{v2, . . . , vk}, project to the coordinates that do not belong to the support of
v1. This yields a code [n−d, k−1, dd/qe]. Let us call this process a Griesmer
step. Repeated application yields to the celebrated Griesmer bound: n ≥∑k−1

i=0 d d
qi e.

The following generalization has been used in [8] for binary codes.

Theorem 2 Let C be a q-ary linear code with parameters [n, k, d] and v ∈ C
of weight w. Assume d − w + dw/qe > 0. Then there is a code [n − w, k −
1, d − w + dw/qe] ( the residual code) obtained by projecting a subcode of
C to the coordinates which do not belong to the support of v.

Proof: Proceed as in a Griesmer step, based on the word v = v1 of weight
w. Complete v1 to a basis {v1, . . . , vk}, let D be the code obtained by pro-
jecting < v2, . . . , vk > to the coordinates which do not belong to the support
of v. Let x be a nonzero word of D having weight w′ after projection to
D. We want a lower bound on w′. It can be assumed that the nonzero en-
tries of v are 1. Denote by δi the number of coordinates in the support of
v, where x has entry i ∈ IFq. As x − i · v is a nonzero word of C we get
wt(x− i · v) = w′ + w− δi ≥ d, or w′ ≥ d−w + δi. As the mean value of the
δi is w/q, our claim concerning the minimum distance of the residual code
is proved. The same considerations also show that the residual code does
indeed have dimension k − 1.
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3 A family of low-dimensional BCH-codes

Let A1 = [1, q2 − q − 3], A2 = [1, q2 − q − 2], A3 = [1, q2 − 1]. The cyclotomic
cosets {−1,−q} and {−(q + 1)} = {q2 − q− 2} show that the corresponding
BCH-codes form a chain C(A1) ⊃ C(A2) ⊃ C(A3) with parameters

[q2 − 1, 3, q2 − q − 2] ⊃ [q2 − 1, 2, q2 − q − 1] ⊃ 0.

Let Bi = {0} ∪ Ai, i = 1, 2, 3. Then C(Bi) contains C(Ai) with codimension
1. Application of Theorem 1 to the chain C(A1) ⊂ C(B1) with [1, 1, 1] as
auxiliary code produces a chain of codes as follows:

Lemma 1 The extended BCH-codes Ci = C̃(Ai), i = 1, 2, 3 form a chain
C1 ⊃ C2 ⊃ C3 of linear q−ary codes with parameters

[q2, 4, q2 − q − 1] ⊃ [q2, 3, q2 − q] ⊃ [q2, 1, q2].

We will use Lemma 1 to obtain new binary and ternary codes.

3.1 A geometrical description

As the coordinate functions of a linear code are linear functionals it is always
possible to describe a k-dimensional linear q-ary code C in the following
way (see [4]): the code words are parametrized by elements x ∈ IF k

q , the
coordinates by elements γ ∈ Γ, where Γ is an n-element subset of IF k

q . The
corresponding entry is x ·γ. Here we make use of the standard scalar product.
It is clear that C = C(Γ) has dimension k if and only if Γ generates the vector
space IF k

q . If 0 /∈ Γ, then C has no zero-column, equivalently d′(C) > 1. Further
C is projective (d′(C) ≥ 3) if and only if no two elements of Γ are multiples of
each other. If C is projective we can consider Γ as a subset of the projective
space Pk−1(q). Multiplying an element of Γ by a nonzero constant produces
an equivalent code. The weight of x in C(Γ) is given by

wt(x) = n− | x⊥ ∩ Γ | .

Consider the extended BCH-codes from Lemma 1. The 3-dimensional code
C2 has the same weight-distribution as C(Γ), where Γ is the affine plane. As
the dual distance is computable from the weight-distribution and C( affine plane )
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is projective, it follows that C2 and C1 are projective. Write C1 = C(Γ) and
study the q2-set Γ, which we consider as a subset of the 3-dimensional projec-
tive geometry. We want to show that no three points of Γ are collinear, equiv-
alently d′(C1) > 3. As d(C1) = q2 − q− 1, we have that every plane intersects
Γ in at most q +1 points. Assume a line l meets Γ in x ≥ 2 points. Counting
points of Γ on the q + 1 planes through l we g q2 ≤ x + (q + 1)(q + 1− x). It
follows x ≤ 2. It is well-known that sets of points in P3(q) with this property
(no three on a line) have at most q2 + 1 points. In the case of equality one
speaks of ovoids. Examples of ovoids are elliptic quadrics. Choose coordi-
nates such that P4 = (0, 0, 0, 1) generates C3, together with P2 and P3 (using
obvious notation) C2 is generated, and let finally P1 = (1, 0, 0, 0) have weight
q2 − q − 1 in C1. As wt(P4) = q2 we have that P⊥

4 =< P1, P2, P3 > intersects
Γ in the empty set. In particular P1 /∈ Γ. As C2 has minimum weight q2 − q,
it follows that planes through P1 contain at most q points of Γ. The usual
counting argument shows that P1 is not collinear with any two points of Γ.
It follows that O = Γ ∪ {P1} is an ovoid. If we add a (q2 + 1) − st column
(1, 0, 0, 0)t to the generator matrix of C1 we get an ovoid-code C(O). Our
extended BCH-code C1 is a shortening of C(O). The weight-distribution of
these codes is now easily determined: every plane E either is a tangent plane
of O (meets O in one point) or it meets O in q + 1 points. Furthermore
every point of O is on precisely one tangent plane. This shows that the
weight-distribution of C(O) is as follows:

A0 = 1, Aq2−q = q(q − 1)(q2 + 1), Aq2 = (q − 1)(q2 + 1).

The weight distribution of C1 is easily determined from this. We record this
in the following Lemma:

Lemma 2 The 4-dimensional extended q-ary BCH-code C1 = C̃(A1) as de-
scribed in Lemma 1 is obtained by shortening from an ovoid code. Its weight-
distribution is

A0 = 1, Aq2−q−1 = q2(q − 1)2, Aq2−q = q(q2 − 1),

Aq2−1 = q2(q − 1), Aq2 = q − 1.

Call a code [n, k, d] d-optimal if it is known that no code [n, k, d−1] exists.
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3.2 Case q = 8, n = 2.

Consider the chain from Lemma 1 in case q = 8. We know that the parameters
of these 8-ary codes are

[64, 4, 55]8 ⊃ [64, 3, 56]8 ⊃ [64, 1, 64]8

and their weight distributions are given by

A64(C3) = 7, A56(C2) = 504, A55(C1) = 3136, A63(C1) = 448.

C3 is generated by the all-1 word, the words in C2 \ C3 are just the words of
weight 56, whereas the words in C1 \ C2 have weights 55 or 63.
The binary code [7, 3, 4]2, a subcode of the Hamming code [8, 4, 4]2, has con-
stant weight 4. Using concatenation of the 8-ary codes above with this binary
code yields binary codes B1 ⊃ B2 ⊃ B3 of parameters

[448, 12, 220]2 ⊃ [448, 9, 224]2 ⊃ [448, 3, 256]2.

The weight distributions are immediate:

A256(B3) = 7, A224(B2) = 504, A220(B1) = 3136, A252(B1) = 448.

B2 and B3 meet the Griesmer bound with equality, are therefore length-
optimal. Apply Theorem 2 to B1. Case w = 220 leads to a code

[228, 11, 110]2.

These parameters are new. They are known to be d-optimal (see [5]). It
follows that B1 is d-optimal as well. Case w = 224 leads to parameters

[224, 11, 108]2.

These are new and d-optimal as well (for the optimality see [5] again). The
weight-distribution is A0 = 1, A108 = 1372, A112 = 248, A124 = 392, A128 =
7, A140 = 28. Using Theorem 2 with w = 108 and w = 112 leads to the new
d-optimal cases

[116, 10, 54] and [112, 10, 52].

Applying Theorem 2 with w = 252 and w = 256 to B1 leads to d-optimal
codes [196, 11, 94] and [192, 11, 92]. Codes with these parameters have been
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constructed in [3] using twisted BCH-codes.
Apply construction X to the pair B1 ⊃ B2. We can use binary codes [4, 3, 2]2
or [7, 3, 4]2. This yields codes

[452, 12, 222]2 and [455, 12, 224]2.

The Griesmer bound shows that both are d-optimal. Application of Theo-
rem 2 yields some optimal codes with known parameters. A Griesmer step
yields a new code, with the same parameters in both cases:

[231, 11, 112]2.

The Griesmer bound shows that this is d-optimal. After another Griesmer
step we get another new d-optimal code with parameters

[119, 10, 56]2.

Let us apply construction X to the pair [455, 12, 224]2 ⊃ [455, 3, 256]2, which
we just constructed by lengthening of the pair B1 ⊃ B3. We use as auxiliary
codes the d-optimal binary codes [10, 9, 2], [14, 9, 4], [18, 9, 6], [21, 9, 8], [27, 9, 10], [30, 9, 12],
[35, 9, 14], [44, 9, 18], [52, 9, 22], [60, 9, 26], [67, 9, 30]. This yields the following
binary codes:

[465, 12, 226], [469, 12, 228], [473, 12, 230], [476, 12, 232], [482, 12, 234],

[485, 12, 236][490, 12, 238], [499, 12, 242], [507, 12, 246], [515, 12, 250], [522, 12, 254].

Griesmer steps yield new code parameters in a few cases:

[240, 11, 114]2, [244, 11, 116]2, [249, 11, 118]2, [258, 11, 122]2.

Apply construction X to the pair U ⊃ B2, where U is a 10-dimensional sub-
code of B1, using [4, 1, 4] as auxiliary code. This leads to a chain [452, 10, 224]2 ⊃
[452, 3, 256]2. Applying construction X again in a second step, with [8, 7, 2] as
auxiliary code, yields a code [460, 10, 226]2. An analogous procedure, based
on an 11-dimensional subcode U of B1 and [6, 2, 4] in the first step, and auxil-
iary codes [9, 8, 2], [20, 8, 8], [51, 8, 24], respectively, in the second step, yields
codes [463, 11, 226]2, [474, 11, 232]2, [505, 11, 248]2. All these codes are rather
good. One Griesmer step still yields the new parameters (eventually after
addition of a parity check bit)

[235, 9, 114]2, [238, 10, 114]2, [242, 10, 116]2, [257, 10, 124]2.
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Next we project the 8-ary codes Cj onto all but i coordinates. After concate-
nation with [7, 3, 4]2 this yields a chain of binary codes

[448− 7i, 12, 220− 4i] ⊃ [448− 7i, 9, 224− 4i] ⊃ [448− 7i, 3, 256− 4i].

For small i these are good codes. Application of construction X to the first
two members in the chain in case i = 1 with auxiliary code [6, 2, 4] yields a
chain [447, 11, 220]2 ⊃ [447, 3, 252]2. Another application of construction X
with [51, 8, 24]2 as auxiliary code produces the new code [498, 11, 244]2. Even
after a Griesmer step we get the new parameters [254, 10, 122]2.
Observe that the largest code in the chain does contain words of weight
224− 4i. If we apply Theorem 2 in case i = 1 with this value of w we get the
d-optimal code

[221, 11, 106].

Its weight distribution is A0 = 1, A106 = 993, A108 = 379, A110 = 186, A112 =
62, A122 = 324, A124 = 68, A126 = 6, A128 = 1. Application of Theorem 2 with
w = 112 yields the new parameters

[109, 10, 50].

As we know the weight distribution of the 8-ary codes it is possible to use
Theorem 2 with different weights. Use case i = 1 with w = 224, case i = 2
with w = 220 and w = 224, and i = 3 with w = 220. This leads to the
following codes:

[217, 11, 104]2, [214, 11, 102]2, [210, 11, 100]2 and [207, 11, 98]2.

The first of these is d-optimal. Application of a Griesmer step to the second
of these codes leads to new d-optimal parameters

[113, 10, 52]2.

3.3 Case q = 9, n = 2.

We use Lemmas 1 and 2 in case q = 9. Concatenation with the code [4, 2, 3]3
of constant weight 3 yields a chain B1 ⊃ B2 ⊃ B3

[324, 8, 213]3 ⊃ [324, 6, 216]3 ⊃ [324, 2, 243]3.
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The weight distributions are immediate:

A243(B3) = 8, A216(B2) = 720, A213(B1) = 5184, A240(B1) = 648.

Code [324, 8, 213]3 is d-optimal. Application of Theorem 2 yields a new d-
optimal ternary code

[108, 7, 69]3

as well as the known parameters [84, 7, 53]3 and [81, 7, 51]3. Application of
another Griesmer step yields some more known optimal codes. Application
of construction X to the pair B1 ⊃ B2 using the auxiliary code [4, 2, 3]3 yields
[328, 8, 216]3. After a Griesmer step we get a new length-optimal code

[112, 7, 72]3.

In the same manner the pair [328, 8, 216]3 ⊃ [328, 2, 243]3, with auxiliary
codes [12, 6, 6], [15, 6, 7], [26, 6, 15] yields codes

[340, 8, 222]3, [343, 8, 223]3 and [354, 8, 231]3,

which after one Griesmer step produce the following new ternary parameters:

[118, 7, 74]3, [120, 7, 75]3 and [123, 7, 77]3.

Projecting the 9-ary codes Cj and concatenating with the ternary [4, 2, 3]
yields a chain of ternary codes [324−4i, 8, 213−3i] ⊃ [324−4i, 3, 216−3i] ⊃
[324−4i, 2, 243−3i]. Codes [320, 8, 210]3 and [316, 8, 207]3 are d-optimal. We
apply Theorem 2 with w = 216 in cases i = 1 and i = 2, (it is in fact easy
to see that words of weight w exist in these codes). This yields the following
d-optimal parameters:

[104, 7, 66]3, [100, 7, 63]3.

3.4 Case q = 16, n = 2.

We consider the ovoid code. After concatenation with a quaternary code
[5, 2, 4] this yields a quaternary [1285, 8, 960]4. Griesmer steps yield quater-
nary codes [325, 7, 240]4 and [85, 6, 60]4. The last of these codes achieves the
largest known minimum distance, the upper bound being d = 61.
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4 More quaternary and binary codes

In [2] we have developed a theory of general BCH-codes and constructed
related codes which arise out of these codes by lengthening and extending.
We consider here the primitive quaternary BCH-codes C(t) of length 63 with
designed distance t + 1. Codes C(t) with t ∈ {41, 42, 46} form a chain C1 ⊃
C2 ⊃ C3 with parameters [63, 8, 42]4 ⊃ [63, 7, 43]4 ⊃ [63, 4, 47]4. Moreover we
consider the general (non narrow-sense) BCH-code U1 with defining interval
[0, 42]. Then U ⊂ C1. This code has parameters [63, 7, 43]4 and it meets the
Ci, i = 2, 3 in BCH-codes with parameters [63, 6, 44]4 and [63, 3, 48]4. Apply
concatenation with [3, 2, 2]2. We get chains C̃i and Ũi of binary codes with
parameters [189, 16, 84]2 ⊃ [189, 14, 86]2 ⊃ [189, 8, 94]2 and [189, 14, 86]2 ⊃
[189, 12, 88]2 ⊃ [189, 6, 96]2, respectively. Apply construction X to the pair
C̃i ⊃ Ũi, with [3, 2, 2] as auxiliary code. The images of the C̃i after lengthening
form a chain [192, 16, 86]2 ⊃ [192, 14, 88]2 ⊃ [192, 8, 96]2. Apply construction
X to the larger of these codes (where in fact we replace the largest code
by a subcode of codimension one), with [2, 1, 2] as auxiliary code. We get
a pair of codes [194, 15, 88]2 ⊃ [194, 8, 96]2. Finally we apply construction
X a last time. Choosing as auxiliary code binary codes with parameters
[8, 7, 2], [12, 7, 4], [16, 7, 6] and [19, 7, 8] in turn we get as a final result four
new binary codes:

[202, 15, 90]2, [206, 15, 92]2, [210, 15, 94]2, [213, 15, 96]3.

Consider the primitive quaternary BCH-codes of designed distances 43 and
47. They form a chain [63, 7, 43]4 ⊃ [63, 4, 47]4. After concatenation with the
code [3, 2, 2]2 we get binary codes [189, 14, 86]2 ⊃ [189, 8, 94]2. Using construc-
tion X with auxiliary code [16, 5, 8] yields a new binary code [205, 13, 94]2.

5 Parameters of new linear codes

For the convenience of the reader we collect the new parameters of linear
codes constructed in this paper. More interesting codes may be obtained by
standard constructions like shortening, puncturing and residues (Griesmer
steps).
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q code parameters section
2 [448,12,220] 3.2
2 [448,9,224] 3.2
2 [224,11,108] 3.2
2 [116,10,54] 3.2
2 [112,10,52] 3.2
2 [452,12,222] 3.2
2 [455,12,224] 3.2
2 [460,10,226] 3.2
2 [463,11,226] 3.2
2 [465,12,226] 3.2
2 [469,12,228] 3.2
2 [473,12,230] 3.2
2 [474,11,232] 3.2
2 [476,12,232] 3.2
2 [482,12,234] 3.2
2 [485,12,236] 3.2
2 [490,12,238] 3.2
2 [499,12,242] 3.2
2 [498,11,244] 3.2
2 [507,12,246] 3.2
2 [505,11,248] 3.2
2 [515,12,250] 3.2
2 [522,12,254] 3.2
2 [221,11,106] 3.2
2 [109,10,50] 3.2
2 [217,11,104] 3.2
2 [214,11,102] 3.2
2 [210,11,100] 3.2
2 [207,11,98] 3.2
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q code parameters section
3 [324,8,213] 3.3
3 [324,6,216] 3.3
3 [108,7,69] 3.3
3 [328,8,216] 3.3
3 [340,8,222] 3.3
3 [343,8,223] 3.3
3 [354,8,231] 3.3
3 [320,8,210] 3.3
3 [316,8,207] 3.3
3 [104,7,66] 3.3
3 [100,7,63] 3.3
4 [1285,8,960] 3.4
2 [202,15,90] 4
2 [206,15,92] 4
2 [210,15,94] 4
2 [213,15,96] 4
2 [205,13,94] 4
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