
A family of 2-weight codes related to
BCH-codes

Jürgen Bierbrauer
Department of Mathematical Sciences

Michigan Technological University
Houghton, Michigan 49931 (USA)

Yves Edel
Mathematisches Institut der Universität

Im Neuenheimer Feld 288
69120 Heidelberg (Germany)

Abstract

For every prime-power q and every pair of natural numbers m ≤ n′

we construct a q-ary linear code of length qm(qn′ − 1)(qn′ − qn′−m +
1)/(q−1) and dimension 3n′, whose only nonzero weights are q2n′+m−1−
q2n′−1 and q2n′+m−1 − q2n′−1 + qn′+m−1. These code parameters and
those of the corresponding family of strongly regular graphs are new
in odd characteristic.

1 A family of extended twisted BCH-codes

We consider extended primitive qm-ary q-linear BCH-codes of length qn,
where n = 2n′, n′ ≥ m. The theory of this generalization of the concept of a
BCH-code to additive nonlinear codes was developed in [8]. We recall the
basic definitions as far as relevant for our purposes: Let F = IFqn , where
n = 2n′, F0 = IFqn′ . Let m ≤ n′. Fix an m-dimensional subspace U ⊂ F0 with
basis Γ = {γ1, . . . , γm} (over IFq). Denote by tr = tr : F −→ IFq and Tr :
F −→ F0 the corresponding traces. Let E = IFm

q . The IFq-linear surjective
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mapping Φ : F −→ E is defined by Φ(u) = (tr(γ1u), . . . , tr(γmu)). For every
0 < t ≤ qn the array A(t) is defined in the following way: its columns are
indexed by u ∈ F, its rows by the pairs (p(X), z), where z ∈ E and p(X)
is a polynomial with coefficients in F, of degree < t, satisfying p(0) = 0.
The corresponding entries are Φ(p(u)) + z. We have shown that A(t) is an
orthogonal array of strength t, with parameters OAq(t−1)(n−m)(t, qn, qm). Each

row of A(t) occurs with multiplicity qρ0(t), where ρ0(t) is the IFq-dimension of
the space of polynomials p(X) as above, which satisfy in addition Φ(p(F )) =
0. It has been shown that we can define a dual code A(t)⊥. This is a qm-ary
IFq-linear code of length qn, minimum distance (equal to minimum weight)
≥ t + 1 and dimension qn − {n(t − 1) + m} + ρ0(t). It was easy to see
that A(qn − 1)⊥ is the repetition code {(e, e, . . . , e)|e ∈ E}, with parameters
[qn, m, qm]. Put C1 = A(qn − 1)⊥. We want to study the low-dimensional
members of the familyA(t)⊥, corresponding to the highest values of t. Denote
by ∆(t) = ρ0(t + 1) − ρ0(t) the increase of function ρ0. Observe that the
codimension of A(t + 1)⊥ in A(t)⊥ is n − ∆(t). In [8] we studied ∆(t). We
will make frequent use of Theorems 3 and 2 of [8] in order to determine ∆(t)
in the cases which are of interest to us. The notation of [8] will be used freely
from now on.
Let t = qn − qn−m − 1, put C2 = A(qn − qn−m − 1)⊥. The cyclotomic coset
Z(t) = {−1,−q, . . . ,−qn−m, . . . ,−qn−1} has length n. Its smallest element is
z1 = −qn−1. We have t = zm and in general zj = z1q

−(j−1), hence π(j) = j−1.
By Theorems 2 and 3 of [8] we have H = {1, 2, . . . ,m}. In particular m ∈ H.
[8],Theorem 3 yields ∆(t) = 0. We conclude that C2 has dimension ≥ n + m.
Let x ∈ C2 − C1. Denote by χu the frequency of entry u in x. Then x −
(u, u, . . . , u) has weight qn − χu. As C2 has minimal weight ≥ qn − qn−m,
it follows χu ≤ qn−m. We conclude that χu = qn−m for every u ∈ E. In
particular every word in C2−C1 has weight qn−qn−m. It follows that A(t)⊥ =
C1 for all qn − qn−m − 1 < t ≤ qn − 1. In particular dim(C2) = n + m.
Consider now t = qn − qn−m − 1− j, where 0 < j < qn′−m. We want to show
that there is no increase of dimension in this range. In order to handle this
situation let us visualize the action of G = Gal(F |IFq) in a more convenient
way: consider the q-adic representation of the numbers ≤ qn − 1. Then
the Frobenius automorphism simply operates as a cyclic change of the n
coordinates. Denote the q-adic representation of i by iq = (αn−1, . . . , α0). In
the q-adic representation of qn−qn−m−qn′−m−1 all but two of the αj = q−1,

2



the exceptions being αn−m = αn′−m = q−2. The q-adic representations of t =
qn−qn−m−1− j above will agree with this, except for the αj, j = 0, . . . , n′−
m−1. These values are arbitrary, but they are not all q−1. We see that tqi, i =
1, . . . ,m − 1 are smaller than t as is tqn′ . In the terminology of Theorem 3
of [8] we want to show that j /∈ H, where t = zj is the j-smallest element of
Z(t). It suffices to show that there is a regular submatrix of M corresponding
to columns, which are indexed by elements < t in Z(t). Consider the columns
corresponding to tqi, i = 1, 2, . . . ,m − 1 and tqn′ . We have to show that a
nontrivial linear combination of these columns is nonzero. Recall that U ⊂
F0. Consider the corresponding automorphisms x −→ xqi

, i = 1, 2, . . . ,m− 1

and x −→ xqn′
. We have to show that the kernel of a nonzero linearized

polynomial p(X) =
∑m−1

i=1 aiX
qi

+ aXqn′
intersects F0 in dimension < m.

Let L = ker(p(X)) ∩ F0. Because of Theorem 2 of [8] we have without
restriction a = 1. It was shown in [2] that the polynomial pL(X) =

∏
u∈L(X−

u) is linearized of degree qdim(L). As U ⊆ F0 we have that pL(X) divides

Xqn′ − X. We are assuming that PL(X) divides P (X). It must therefore

also divide p(X) − (Xqn′ −X), which is a nonzero linearized polynomial of
degree ≤ qm−1. We conclude that dim(L) < m, hence j /∈ H. It follows
that A(qn − qn−m − qn′−m)⊥ = A(qn − qn−m − 1)⊥. Finally let t = qn −
qn−m − qn′−m − 1, put C3 = A(t)⊥. We see that |Z(t)| = n′, t = zm and
zj = z1q

−(j−1), j = 1, . . . ,m. We conclude from Theorems 2 and 3 of [8]
that H = {1, 2, . . . ,m}. From Proposition 3 of [8] we know that the total
contribution of Z(t) is

∑
z∈Z(t) ∆(z) = n′(n − m). The contribution of the

zj, j /∈ H is (n′ − m)n. It follows that the average contribution of a j ∈ H
is n′. We claim that for every j ∈ H we have ∆(zj) = n′. It suffices to prove
∆(zj) ≥ n′ for every j ∈ H. As K = ker(Tr : F −→ F0) is F0-linear it
suffices to prove ∆(zj) 6= 0, j = 1, 2, . . . ,m. Theorem 3 of [8] expresses this
quantity as ∆(zj) = dj − dj−1 = dim(Sj ∩ D)− dim(Sj−1 ∩ D). The entries

of M are mk,j = γqj−1

k . The space Sj is generated by the first j columns.
Choose a vector (x1, . . . , xj), where xa ∈ K and xj 6= 0. We claim that the
corresponding linear combination of the first j columns of M represents an

element of (Sj∩D)−(Sj−1∩D). We have to prove that Tr(
∑j

a=1 xaγ
qa−1

k ) = 0.
As γk ∈ F0 and Tr(xa) = 0 this is clear. We have proved our claim. In
particular ∆(t) = n′. It follows that C3 has dimension n′+(n+m) = 3n′+m.

Theorem 1 With notation as above the lowest-dimensional extended primi-

3



tive twisted BCH-codes of length qn, where n = 2n′, form a chain C1 ⊂ C2 ⊂
C3 with parameters

[qn, m, qn] ⊂ [qn, n + m, qn − qn−m] ⊂ [qn, 3n′ + m, qn − qn−m − qn′−m].

Here C1 is the repetition-code. The dimensions are over IFq.

Next we wish to study the weight-distribution of these codes. C2 has
been dealt with already. As a preparation we note that we can make use of
a rather large automorphism group:

Theorem 2 Let A = AGL1(q
n) be the affine group of order qn(qn−1) in its

operation on the elements of F (the columns of A(t)). Then A is a group of
automorphisms of A(t) (and of A(t)⊥.

Proof: Let 0 6= λ ∈ F. We claim that the permutation u −→ λ · u on the
columns of the array is an automorphism. In fact, the entry in row (p(X), z)
and column u of the permuted array is Φ(p(λ · u)) + z. This shows that our
permutation maps row (p(X), z) to row (p(λX), z).
Consider a permutation u −→ u+α. The entry in row (p(X), z) and column
u of the permuted array is Φ(p(u+α))+z. However, we cannot use the poly-
nomial p(X + α), as its constant term may not vanish. Put q(X) = p(X +
α)−p(α). Then write our entry in the form Φ(q(u))+Φ(p(α))+z. It remains
to be shown that the mapping (p(X), z) −→ (p(X + α)− p(α), Φ(p(α)) + z)
is a permutation of the rows of our array. This is immediately clear.

We start by exhibiting an element of C3 − C2. Observe at first that we
could have started from arrays A′(t) instead of A(t), whose rows are given
by the polynomials p(X) if degree < t and with entry Φ(p(u)) in column
u. Then A′(t) differs from A(t) only in the multiplicities of rows. In par-
ticular A′(t)⊥ = A(t)⊥. We have mentioned earlier that the information
used about Φ is its kernel. We take the liberty to redefine Φ by setting
Φ(x) =

∑m
i=1 tr(γix)γi. In this way we identify E with U. Fix the scalar prod-

uct · on U with Γ as orthonormal basis. Let pV (X) =
∏

v∈V (X − v), where
the subspace V ⊂ F0 is chosen such that pV (F0) = U. It was shown in [2] that
V is uniquely defined and has dimension n′ −m. In particular the linearized

polynomial pV (X) has degree qn′−m. Put q(X) = pV (Y ), where Y = Xqn′+1.
We see that q(F ) ⊆ U and q(X) is a polynomial of degree qn−m + qn′−m. Put
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t = qn − qn−m − qn′−m − 1. As the polynomials defining the rows of A′(t)
have degrees < t we see that

∑
u∈F p(u)q(u) = 0 for all those p(X). We claim

that x = (q(u))u ∈ A(t)⊥. Put q(u) =
∑m

i=1 q(u)iγi. Then
∑

u Φ(p(u)) ·q(u) =∑
u

∑m
i=1 tr(γip(u))q(u)i = tr(

∑
u p(u)

∑
i q(u)iγi) = tr(

∑
u p(u)q(u)) = 0.

We have found an element x ∈ C3 − C2. Let χe be the frequency of entry
e ∈ U in x. We have χ0 = 1 + (qn′−m − 1)(qn′ + 1) = qn−m + qn′−m − qn′ .
Thus wt(x) = qn − qn−m − qn′−m + qn′ . If e 6= 0, then χe = qn′−m(qn′ + 1) =
qn−m + qn′−m, hence wt(x− (e, e, . . . , e)) = qn− qn−m− qn′−m. It follows that
there are only q − 1 words of weight wt(x) in the space generated by x and
C1. Consider the stabilizer of x under the action of the affine group A. The

element u −→ αu+β stabilizes x if and only if pV ((αu+β)qn′+1) = pV (uqn′+1)
for every u ∈ F. As the degrees of the polynomials involved are < qn this is a

polynomial equation in u. Comparing coefficients we see β = 0, αqn′+1 = 1. It
follows that the stabilizer of x under the action of A is cyclic of order qn′ +1.
The length of the orbit is therefore qn(qn′ − 1).
The number of (m + 1)−dimensional subspaces containing C1 and not con-
tained in C2 clearly is (q3n′+m−qn+m)/(qm+1−qm) = 1

q−1
qn(qn′−1). It follows

that A is transitive on these subspaces. In particular we know the weight
distribution of our codes.

Theorem 3 Every word in C2 − C1 has weight a1 = qn − qn−m. Put a2 =
qn − qn−m + qn′ . The only weights occuring in C3 − C2 are a1 − qn′−m and
a2 − qn′−m. The words of weight a2 − qn′−m form a single orbit under the
affine group of order qn(qn − 1). The length of this orbit is qn(qn′ − 1).

2 A family of 2-weight codes and strongly

regular graphs

We use the codes constructed in the previous section. At first consider the
subcodes C ′i ⊂ Ci consisting of the words with entry e = 0 in the coordinate
u = 0. Naturally we omit this entry 0 then. We obtain qm-ary codes of
length qn − 1. The dimensions of C2, C3 are n and 3n′, respectively. Only
weights a1, a1 − qn′−m and a2 − qn′−m survive. Next we use concatentation
with the q-ary simplex code [(qm − 1)/(q − 1), m, qm−1]. Observe that this is
a constant-weight code. The result is a pair of linear q-ary codes D2 ⊂ D3

of length (qn − 1)(qm − 1)/(q − 1). The dimensions remain unchanged. The
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weights pick up a factor of qm−1. Finally apply construction X [10, 4] to
the pair D3 ⊃ D2 of qm-ary codes. As auxiliary code use the simplex code
[(qn′−1)/(q−1), n′, qn′−1]. In the resulting code D̃3 the only weights occuring
are w1 = a1q

m−1 and w2 = a2q
m−1. This is so because the weights of the

words in D2 remain unchanged, whereas the weight of every word in D3−D2

increases by qn′−1.

Theorem 4 For every prime-power q and natural numbers m ≤ n′ there is
a q-ary 2-weight code Cq,m,n′ of length nq,m,n′ = qm(qn′ − 1)(qn′ − qn′−m +
1)/(q− 1) and dimension 3n′, with weights w1 = q2n′+m−1− q2n′−1 and w2 =
q2n′+m−1 − q2n′−1 + qn′+m−1

The weight-distribution is given by

A(w1) = (q2n′ − 1)(qn′ − qn′−m + 1), A(w2) = qn′−m(qn′ − 1)(qn′ − qm + 1).

Consider the strongly regular graph Γq,m,n′ , whose vertices are the code words
and with adjacency defined in the following way: the coordinates of Cq,m,n′

form a family of linear functionals φi : Cq,m,n′ −→ IFq. Put Pi = ker(φi)
⊥, i =

1, 2, . . . , nq,m,n′ . Informally the one-dimensional subspaces Pi may be de-
scribed as generated by the columns of a generator matrix of Cq,m,n′ . Two
code words x, y are adjacent in Γq,m,n′ if x− y is contained in one of the Pi.
The parameters of the strongly regular graph Γq,m,n′ are easily determined:
The number of vertices is q3n′ , the valency is K = qm(qn′−1)(qn′−qn′−m+1).
The number of common neighbours of a pair of nonadjacent vertices is
µ = qm(qm − 1)(qn′ − qn′−m + 1). As the formula for λ looks rather ugly
it may be wiser to work with the intersection numbers. In fact, we have
K−1−λ = (qn′ +1)(qm−1)(qn′−qm +1). We remark that the smallest odd-
characteristic member of our family is not new. Gulliver [9] has constructed
a ternary 2-weight code [84, 6, 54] (with the same parameters as C3,1,2) by
different means.

3 Motivation from maximal arcs

Consider the classical projective plane Π = P2(q) of order q. A point-set K is
a {v; k}-arc if |K| = v and no line contains more than k points of K. Denote
by m2(k, q) the largest cardinality v of a {v; k}-arc in Π. Fix a point P ∈ K.
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There are q +1 lines through P. Each line contains at most k−1 points from
K, aside of P itself. It follows v ≤ (q + 1)(k − 1) + 1. In the case of equality
we call K a maximal {v; k}-arc. Assume K is a maximal {v; k}-arc. Call
K nontrivial if 1 < k < q. The same type of counting argument shows that k
divides q. Denniston [7] has given an elegant construction of maximal arcs in
characteristic two. Thus in characteristic 2 all conceivable maximal arcs do
exist. In a forthcoming paper by Ball, Blokhuis and Mazzocca [1] the ques-
tion of existence of maximal arcs is completely settled. These authors show
the nonexistence of nontrivial maximal {v; k}-arcs in desarguesian projective
planes of odd order.
A fundamental relationship between linear codes and sets of points in pro-
jective spaces ( see [6], for example), shows that a maximal {v; k}-arc in the
projective plane P2(q) is equivalent with a q-ary projective code [kq + k −
q, 3, kq− q], which has only two weights: kq− q and kq +k− q. Consider now
IFqn′ as the ground field and assume for the moment that a maximal {v; k}-
arc exists in the classical projective plane of order qn′ , where k = qm. This
means that we have a qn′-ary 2-weight code [qn′+m − qn′ + qm, 3, qn′+m − qn′ ]
with qn′+m− qn′ and qn′+m− qn′ + qm as nonzero weights. Use concatenation
with the q-ary Simplex code [(qn′ − 1)/(q − 1), n′, qn′−1]. This would yield a
large family of q-ary two-weight codes. The parameters are precisely those
of our family of codes Cq,m,n′ . We conclude that these codes exist although
the corresponding maximal {v; k}-arcs do not exist in odd characteristic.

4 Partial geometries

The parameters of the strongly regular graphs corresponding to our two-
weight codes are pseudogeometric. This means that partial geometries
pg(qn′ , qm(qn′ − qn′−m + 1), qm − 1) may exist.

Problem 1 Let q be a prime-power and m,n′ natural numbers, 0 < m < n′.
Does there exist a partial geometry with parameters
pg(qn′ , qm(qn′ − qn′−m + 1), qm − 1)?

In characteristic two they can be constructed using the Denniston arcs
(see [5]):

Theorem 5 Let q = 2f , k = 2i, i < f. Then there exists a pg(q, kq − q +
k, k − 1).
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Proof: As set of points we choose IF 3
q . Let K ⊂ P2(q) be a maximal

{v; k}-arc (for example a Denniston arc), seen as a collection of qk − q + k
one-dimensional subspaces. As lines choose these one-dimensional subspaces
and their cosets. The axioms are easily verified.

In case k = 2 this yields a well-known family of generalized quadrangles
GQ(q− 1, q + 1). The substitution q −→ qn′ , k −→ qm shows that our family
of partial geometries certainly exists in characteristic two. To the best of our
knowledge the question of existence is open in all remaining cases.
The dual of pg(k, r, t) is a pg(r, k, t). In the case of our parameters this leads
to the following problem:

Problem 2 Let q be a prime-power and m, n′ natural numbers, 0 < m < n′.
Does there exist a strongly regular graph on q2n′+m(qn′ − qn′−m + 1) vertices,
with valency K = qn′(qm − 1)(qn′ + 1) and µ = qn′(qm − 1), K − 1 − λ =
(qn′ − 1)(qn′+m − qn′ + 1)?

It is clear by now that all these structures exist in characteristic two. In
odd characteristic the question is wide open.
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