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Abstract
We show that 40 is the maximum number of points of a cap in

AG(4, 4). Up to semi-linear transformations there is only one such
40-cap. Its group of automorphisms is a semidirect product of an
elementary abelian group of order 16 and the alternating group A5.

1 Introduction

A cap is a set of points no 3 of which are collinear. The maximum number
of points of a cap in PG(n, q) or AG(n, q) for n > 3, q > 2 is known only in a
few cases. In PG(4, 3) and AG(4, 3) the maximum is 20 (see Pellegrino [7])
and all these caps are known. In PG(5, 3) the maximum is 56 (Hill [6]), in
AG(5, 3) the maximum is 45 [3]. In both cases the maximal caps are uniquely
determined . The 45-cap in AG(5, 3) is an affine section of the Hill cap in
PG(5, 3). Only one further value of the problem mentioned above is known:
the maximum size of a cap in PG(4, 4) is 41 [2]. The proof that there are
exactly two 41-caps in PG(4, 4) under the action of PΓL(5, 4) will appear in
a forthcoming paper.

In the present paper we prove the following:
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Theorem 1. The maximum number of points of a cap in AG(4, 4) is 40.
Call a cap in PG(4, 4) affine if it avoids a hyperplane. There is only one
orbit of affine 40-caps in PG(4, 4) under the action of PΓL(5, 4) and two
orbits under the action of PGL(5, 4). This cap is complete in PG(4, 4). Its
group of automorphisms has order 960 and is transitive on the points of the
cap.

In Section 2 we construct the 40-cap in AG(4, 4), starting from its au-
tomorphism group. The proof of maximality and uniqueness is described in
the final section.

2 Description of the maximal cap in AG(4, 4)

We start from a description of the group of automorphisms. Let A =(
a b
c d

)
∈ SL(2, 4). The mapping

A 7→ ι(A) =


a b 0 0 (ab)2

c d 0 0 (cd)2

0 0 a2 b2 ab
0 0 c2 d2 cd
0 0 0 0 1


describes an embedding ι : SL(2, 4) → SL(5, 4). Let W (B) =

(
I B
0 I

)
∈

SL(5, 4), where B is a (2, 3)-matrix. Then W = {W (B)} is an elementary
abelian group of order 46 and W (B1)W (B2) = W (B1 + B2). We have

ι(A)−1W (

(
u v x
w x u

)
)ι(A) = W (

(
U V X
W X U

)
) (1)

where

X = ad2x + b2cu + cd2v + ab2w, U = bc2x + a2du + c2dv + a2bw,

V = bd2x + b2du + d3v + b3w, W = ac2x + a2cu + c3v + a3w

Lemma 1. Consider the standard action of SL(2, 4) on a 2-dimensional
IF4-vector space S with basis v1, v2 :

Av1 = av1 + cv2, Av2 = bv1 + dv2
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and let φ(A) be the image of A under the Frobenius automorphism (i.e. the
mapping φ : IF4 → IF4 : x 7→ x2). The tensor product S⊗S is a 4-dimensional
IF4-vector space with basis v1⊗v1, v2⊗v2, v1⊗v2, v2⊗v1. Let SL(2, 4) act on
S ⊗ S such that A acts on the first component and φ(A) acts on the second
component (v ⊗ w 7→ (Av)⊗ (φ(A)w)).

This action of SL(2, 4) is similar to the permutation action as described

in (1) of ι(SL(2, 4)) on the W (

(
u v x
w x u

)
). The SL(2, 4)-equivariant iso-

morphism is given by

w(v1 ⊗ v1) + v(v2 ⊗ v2) + x(v1 ⊗ v2) + u(v2 ⊗ v1) 7→ W (

(
u v x
w x u

)
)

This follows directly by inspection. Because of Lemma 1 each additive
subgroup of S ⊗S, which is invariant under the action of SL(2, 4), describes
a semidirect product embedded in SL(5, 4).

Lemma 2. The IF2-submodule (additive subgroup) V generated by ω(v1 ⊗
v1), ω(v2⊗v2) and the ωδ(v1⊗v2)+ωδ2(v2⊗v1) is an SL(2, 4)-module under
the action of SL(2, 4) from Lemma 1.

Corollary 1. The group ι(SL(2, 4)) acts by conjugation on the elementary

abelian subgroup V consisting of W (

(
u v x
w x u

)
) where v, w ∈ {0, ω} and

(x, u) = ω(δ, δ2) for some δ ∈ IF4. Denote by G the semidirect product
V : SL(2, 4) ⊂ SL(5, 4).

Definition 1. Let K be the orbit of P = (0, 0, 0, 0, 1)T under G.

Lemma 3. We have |K| = 40, and K consists of the points Q = (ωaδ +

ωbδ2 + (ab)2, ωcδ + ωdδ2 + (cd)2, ab, cd, 1), where A =

(
a b
c d

)
∈ SL(2, 4)

and δ ∈ IF4.

Proof. Application of W (B) to P yields (ωδ, ωδ2, 0, 0, 1)T . Its image under
ι(A) is

Q = (ωaδ + ωbδ2 + (ab)2, ωcδ + ωdδ2 + (cd)2, ab, cd, 1).

Assume Q = P. Then ab = cd = 0, which means that A is in a subgroup
SL(2, 2). The first coordinates show δ(a + bδ) = δ(c + dδ) = 0. If δ 6= 0 we
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obtain the contradiction det(A) = 0. It follows that the stabilizer of P in G
consists of those elements ι(A)W (B), where δ = 0 and ab = cd = 0. This
group has order 4 · 6. The length of the orbit of P under G is therefore 40.

Lemma 4. The intersection of K with the hyperplane x4 = 0 consists of the
affine ovoid V (ωX2

2 + X2
3 + X1X5 + X2X3) \ {(1, 0, 0, 0, 0)}. The intersection

of K with the hyperplane x3 = 0 consists of the affine ovoid V (ωX2
1 + X2

4 +
X2X5 +X1X4)\{(0, 1, 0, 0, 0)}. Here V (f(X1, . . . , Xn)) denotes the algebraic
variety determined by the homogeneous polynomial f(X1, . . . , Xn).

Proof. Consider point Q in Lemma 3, the generic image of P under an ele-
ment of G. We have Q ∈ (x4 = 0) if and only if cd = 0. There are 16 · 24
elements of G having this property. As the stabilizer of P has order 24 it
follows |C ∩ (x4 = 0)| = 16. The points Q ∈ K ∩ (x4 = 0) have the form
Q = (ωaδ + ωbδ2 + (ab)2, ωcδ + ωdδ2, ab, 0, 1). Its coordinates satisfy

ωx2
2 = ωc2δ2 + ωd2δ4 = ωc2δ2 + ωd2δ

(because δ4 = δ) and

x2
3 + x1x5 = ωaδ + ωbδ2, x2x3 = ωabcδ + ωabdδ2.

Collecting terms we obtain

ω(ωx2
2 + x2

3 + x1x5 + x2x3) = δ(a + abc + d2) + δ2(b + abd + c2).

Recall cd = 0. Assume c = 0. Then ad = 1 and the coefficient of δ2 vanishes.
The coefficient of δ is a + d2 = (1 + d3)/d = 0. In case d = 0 a symmetric
argument applies. This shows that the points Q ∈ C ∩ (x4 = 0) are on the
quadric as claimed. Case x3 = 0 follows by symmetry.

Theorem 2. The points of K form a cap.

Proof. Recall that the 40 points of K form an orbit under the action of G
and P ∈ K. Assume three points of K are collinear. Then there is a line
through P containing two further points Q1, Q2 of K. The affine parts of
these two points (the first four coordinates) must be scalar multiples of each
other. Lemma 4 shows that this does not happen when these points satisfy
x3 = 0 or x4 = 0. Consider a point Q ∈ K such that ab 6= 0, cd 6= 0.
We must have ad ∈ {ω, ω} and therefore abcd = 1. It follows that such
points satisfy x4 = 1/x3. For any two such points the pair (x3, x4) is one of
(1, 1), (ω, ω), (ω, ω). Any two such pairs which are scalar multiples of each
other must be identical.
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Consider the hyperplanes

H1 = (x3 = 0), H2 = (x4 = 0), H3 = (x3 + x4 + x5 = 0),

H4 = (ωx3 + ωx4 + x5 = 0), H5 = (ωx3 + ωx4 + x5 = 0).

Then {H1, H2, H3, H4, H5} form an orbit under G. Clearly ∩5
i=1Hi is the line

x3 = x4 = x5 = 0, and V acts on each Hi. The kernel of the permutation
action of G on these hyperplanes is of course precisely V, and ι(SL(2, 4)) acts
as A5.

The intersection of K with hyperplane H1 is an affine ovoid:

K ∩ (x3 = 0) = (x3 = 0) ∩ (x5 = 1) ∩ V (ωX2
1 + X2

4 + X2X5 + X1X4).

The action of G shows that K ∩ Hi is an affine ovoid for all i = 1, . . . , 5.
In fact K = ∪5

i=1(K ∩ Hi), and each point of K is in precisely two of the
hyperplanes Hi. Further Hi ∩Hj ∩K has precisely 4 points whenever i 6= j,
and K is the disjoint union of H ∩ H ′ ∩ K, where {H, H ′} varies over the
pairs of our hyperplanes.

3 Maximality and uniqueness

We show that the affine 40-cap K described in Section 2 is up to the action
of the group PΓL(5, 4) of semi-linear transformations the only affine cap in
PG(4, 4). Also, K is complete in PG(4, 4) and the group G from Section 2
is the full stabilizer of K in PΓL(5, 4). This suffices to prove all claims of
Theorem 1. As G does not have a subgroup of index 2 it follows that there
are precisely two orbits of affine 40-caps under the action of PGL(5, 4).

Let A ⊂ PG(4, 4) be an affine 40-cap. Consider a (5, 40)-matrix M whose
columns are representatives of the points of A. Consider M as generator
matrix of a code C = C(A). Then C is a linear [40, 5]4-code, and w is the
weight of a codeword from C if and only if there is a hyperplane of PG(4, 4)
intersecting A in precisely 40− w points.

Let d be the minimum distance of C. By the Griesmer bound of coding
theory [4] we have d ≤ 28. This means that A meets some hyperplane in at
least 12 points.

Assume d = 28, equivalently that all hyperplane sections of A are ≤ 12.
Denote by ni the number of hyperplanes intersecting A in i points and by
H0 a hyperplane avoiding A. We use a generalization of the construction of
residual codes, which can be found in [5]:
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Theorem 3. If there is a linear [n, k, d]q-code, which contains a codeword of
weight w, where w < dq/(q − 1), then we can construct an [n−w, k−1]q-code
of minimum distance ≥ d− bw(q − 1)/qc.

Note that in the situation of Theorem 3 the n−w points in the hyperplane
yield the columns of the generator matrix of a code [n− w, k − 1, d′], where
d′ ≥ d− bw(q − 1)/qc.

Assume A intersects a hyperplane in 11 points. Then Theorem 3 produces
an [11, 4, 7]4-code. As such a code does not exist [1] we obtain a contradiction.
By the same argument the non-existence of [7, 4, 4]4- and [6, 4, 3]4-codes [1]
shows that A has no hyperplane section of 7 or 6 points. Let H0 be the
hyperplane at infinity avoiding A. In homogeneous coordinates we write
H0 = (x0 = 0) and represent points not in H0 as (1 : x1 : x2 : x3 : x4). Call
two hyperplanes different from H0 parallel if they intersect H0 in the same
plane. The 340 hyperplanes different from H0 come in 85 parallel classes of
four each. Such a parallel class has type (s1, s2, s3, s4), where s1 ≥ s2 ≥ s3 ≥
s4, if A intersects the hyperplanes of this parallel class in s1, s2, s3 and s4

points. As none of the si exceeds 12 and none equals 11, 7 or 6 the only
possible types of parallel classes of hyperplanes are

(12, 12, 12, 4), (12, 12, 8, 8), (12, 10, 10, 8), (12, 10, 9, 9), (10, 10, 10, 10).

Let a1, . . . , a5 be the number of parallel classes of the respective type. Assume
a3 = a5 = 0. The standard equations on the hyperplane intersection numbers∑

i≥0

(
i

s

)
ni =

(
40

s

)
45−s − 1

3
, s = 0 . . . 3,

(equivalent to C having dual distance > 3) yield equations on the ai :

a1 + a2 + a4 = 85

204a1 + 188a2 + 183a4 = 16380

664a1 + 552a2 + 508a4 = 49400

The unique solution has a2 < 0, contradiction.
Consequently parallel classes of type (12, 10, 10, 8) or (10, 10, 10, 10) must

occur. We can assume that H1 = (x1 = 0) is one of the hyperplanes inter-
secting A in 10 points. Theorem 3 shows in fact that the (4, 10)-matrix with
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columns (1, x2, x3, x4)
T , where (1 : 0 : x2 : x3 : x4) varies over A ∩ H1, gen-

erates a code [10, 4, 6]4. Such codes (containing the 1-word, of dual distance
4) do exist. Fortunately they can be classified. An exhaustive computer
search was performed. Under the action of the stabilizer of H0 and of H1

in PΓL(5, 4) there are 3 orbits of such codes (equivalently, from the dual
perspective, orbits of 10-caps in H1 \H0, which generate a code of dual dis-
tance 6). Using a similar computer search as in [2] we see that none of these
10-caps in H1 can be completed to an affine 40-cap intersecting the parallels
of H1 in {12, 10, 8} or {10, 10, 10} points.

This shows that d < 28, equivalently A must intersect some hyperplane
in more than 12 points. Assume the largest hyperplane intersection is 13, 14
or 15. It is possible to classify the caps of these sizes in H1 \H0. The group
induced by PΓL(5, 5) on H1, mapping H0 to itself, is a semidirect product
of an elementary abelian group of order 43 and ΓL(3, 4). There are 4 orbits
of 13-caps, 2 orbits of 14-caps and one orbit of 15-caps (of course). None of
these can be completed to an affine 40-cap.

This shows that the maximal hyperplane intersection size must be 16. The
16-cap in H1 is uniquely determined. Another exhaustive search produced all
the affine 40-caps containing this starting cap. It turns out that they all are
in one orbit under PΓL(5, 4). Moreover K is complete as a cap in PG(4, 4).
Another computer search shows that the stabilizer of K in PΓL(5, 4) has or-
der 960. This completes the proof of Theorem 1. The hyperplane intersection
numbers are

n16 = 5, n12 = 120, n10 = 160, n8 = 15, n4 = 40, n0 = 1.
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