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Abstract

Let m2(N, q) denote the size of the largest caps in PG(N, q) and
let m′

2
(N, q) denote the size of the second largest complete caps in

PG(N, q). Presently, it is known that m2(4, 5) ≤ 111 and that m2(4, 7)
≤ 316. Via computer searches for caps in PG(4, 5) using the result of
Abatangelo, Larato and Korchmáros that m′

2
(3, 5) = 20, we improve

the first upper bound to m2(4, 5) ≤ 88. Computer searches in PG(3, 7)
show that m′

2
(3, 7) = 32 and this latter result then improves the upper

bound on m2(4, 7) to m2(4, 7) ≤ 238. We also present the known upper
bounds on m2(N, 5) and m2(N, 7) for N > 4.

1 Introduction

An n-cap in the projective space PG(N, q) of dimension N over the finite field
of order q is a set of n points, no three of which are collinear. A cap is called
complete when it is not contained in a larger cap of the same projective space.
The largest size of caps in PG(N, q) is denoted by m2(N, q). The size of the
second largest complete caps in PG(N, q) is denoted by m′

2
(N, q). Thus any

n-cap with n > m′

2
(N, q) can be extended to a cap of size m2(N, q).

Presently, only the following exact values of m2(N, q) are known. In
PG(2, q), q odd, there are at most (q +1)-caps [8]. In PG(2, q), q even, there
are at most (q + 2)-caps [8]. In PG(3, q), q > 2, the maximal size of a cap is
q2 + 1 [8, 32], and in PG(N, 2), the maximal size of a cap is 2N [8].

In some spaces PG(N, q), a complete characterization of the m2(N, q)-
caps is known. Namely, in PG(2, q), q odd, every (q + 1)-cap is a conic
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[33, 34]. In PG(2, q), q even, q ≥ 16, distinct types of (q + 2)-caps exist;
see [27] for a list of the known infinite classes of (q + 2)-caps. In PG(3, q),
q odd, every (q2 + 1)-cap is an elliptic quadric [3, 30]. In PG(3, q), q = 2h,
h odd, h ≥ 3, at least one type of (q2 + 1)-caps different from the elliptic
quadrics exists, called the Tits ovoid [38]. In PG(N, 2), every 2N -cap is the
complement of a hyperplane [35].

Apart from these results which are valid either for arbitrary q or for arbi-
trary dimension N , some sporadic results are known. Namely, the maximal
size of a cap in PG(4, 3) is 20 [31], the maximal size of a cap in PG(5, 3) is
56 [20], and the maximal size of a cap in PG(4, 4) is 41 [14].

Regarding the characterizations, exactly 9 types of 20-caps exist in PG(4, 3)
[22], the 56-cap in PG(5, 3) is projectively unique [21], and there are exactly
2 distinct types of 41-caps in PG(4, 4) [13].

In the other cases, only upper bounds on the sizes of caps in PG(N, q)
are known. We refer to [27] for a list of the known results. We also wish
to state the following result published in [4, 5] which gives the best upper
bounds on the size of caps in PG(N, q), for large enough N .

Theorem 1.1 For q > 3 and N ≥ 3,

m2(N, q) ≤ qN ·
N + 1

N2
+ qN−1 ·

3 · N

2(N − 1)2
.

The following tables show for small values of q and N the known values
of m′

2
(N, q). Table 1 is [27, Table 2.4]. For the exact references for Table 1,

we refer to [27, Table 2.4].

q 7 8 9 11 13 16 17 19 23 25 27 29

m′

2
(2, q) 6 6 8 10 12 13 14 14 17 21 22 24

Table 1: m′

2
(2, q) in small planes

q 3 4 5 7
N

3 8 14 20 32
4 19 40
5 48

Table 2: m′

2
(N, q)

For the values of Table 2, we refer to [17] for (N, q) = (3, 3), [25] for
(N, q) = (3, 4), [1] for (N, q) = (3, 5), [37] for (N, q) = (4, 3), [16] for (N, q) =
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(4, 4), and [2] for (N, q) = (5, 3). The latter value m′

2
(3, 7) = 32 is presented

in this article (Theorem 3.5).
Apart from these results, it is also known that

(1) m′

2
(2, 22h) = 22h − 2h + 1 for h > 1 [7, 18, 28],

(2) m′

2
(N, 2) = 2N−1 + 2N−3, N ≥ 3 [10].

There exists a 66-cap in PG(4, 5) [15], and a result of Gronchi [19] shows
that m2(4, 5) ≤ 111. So presently,

66 ≤ m2(4, 5) ≤ 111.

We will lower the upper bound to 88 by using computer searches using
geometrical arguments which include the result of Abatangelo, Larato and
Korchmáros that m′

2
(3, 5) = 20 [1]. This then leads to

66 ≤ m2(4, 5) ≤ 88.

Presently, from [15, 19],

132 ≤ m2(4, 7) ≤ 316.

We will improve this to

132 ≤ m2(4, 7) ≤ 238.

We obtain this improvement by using computer searches which determine
the precise value of m′

2
(3, 7). Our computer searches show that

m′

2
(3, 7) = 32.

2 Caps in PG(N, 5)

Presently, the following results on caps in PG(3, 5) and PG(4, 5) are known:

(a) since m′

2
(3, 5) = 20, every 21-cap in PG(3, 5) is a subset of an elliptic

quadric, and

(b) 66 ≤ m2(4, 5) ≤ 111.

We will improve the upper bound on m2(4, 5) to m2(4, 5) ≤ 88. This
upper bound will be obtained by eliminating the existence of 89-caps in
PG(4, 5) by means of computer searches.

We first prove a number of results which are useful for the computer
searches.
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Lemma 2.1 For every 19-cap in PG(3, 5), there is a plane intersecting this
cap in a conic.

Proof: Assume that K is a 19-cap such that every plane intersects K in at
most 5 points. Then an elementary counting shows that every bisecant to K
lies in exactly one plane sharing 4 points with K and in five planes sharing 5
points with K. This implies that the number of bisecants must be a multiple
of 6 which is the number of bisecants in a 4-plane.

But the number of bisecants to a 19-cap is 171 and this is not a multiple
of 6. 2

Lemma 2.2 For every 84-cap in PG(4, 5), there is at least one plane inter-
secting this cap in a conic.

Proof: Through every bisecant to a 84-cap K, there is at least one plane
intersecting this cap in at least 5 points. Denote this plane by π. Consider
the six solids through π. Then there is at least one solid through π sharing
at least 19 points with K. The preceding lemma now shows that there is at
least one plane sharing a conic with K. 2

Let K be a cap in PG(4, 5), let π be a plane intersecting K in a conic,
and let π1 and π2 be two solids through π both sharing at least 21 points
with K. These solids intersect K in subsets of elliptic quadrics. Denote these
two elliptic quadrics in π1 and π2 respectively by Q1 and Q2.

These two 3-dimensional elliptic quadrics Q1 and Q2 define a pencil of six
4-dimensional quadrics pairwise intersecting in Q1 ∪ Q2. We now determine
which quadrics precisely occur within this pencil.

Lemma 2.3 The two 3-dimensional elliptic quadrics Q1 and Q2 in the solids
π1 and π2 define a pencil of six 4-dimensional quadrics consisting of the solid
pair π1 ∪ π2, three non-singular parabolic quadrics, and two cones with base
a non-singular 3-dimensional elliptic quadric and a point as vertex.

Proof: These two elliptic quadrics Q1 and Q2 together contain 26+20 = 46
points since they intersect in a conic. One of the quadrics in the pencil defined
by Q1 and Q2 is π1 ∪ π2 containing 281 points.

Now |PG(4, 5) \ (π1 ∪ π2)| = 500.
Assume that, besides π1 ∪ π2, the pencil defined by Q1 and Q2 contains

x non-singular 4-dimensional parabolic quadrics and y cones with base a
non-singular 3-dimensional elliptic quadric and a point as vertex. Then

{

x + y = 5
x(156 − 46) + y(131 − 46) = 500,
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where 156 is the cardinality of a non-singular 4-dimensional parabolic quadric
and where 131 is the cardinality of a cone with base a non-singular 3-
dimensional elliptic quadric and a point as vertex.

This implies (x, y) = (3, 2). 2

We now state a lemma involving a particular size for the cap K. The
main goal of this lemma is to present some of the ideas used in the computer
searches, and to motivate the following subsections. The ideas of this lemma
will also be used for other sizes of caps. We will present these analogous
results, by referring to this lemma.

Lemma 2.4 Let K be a 67-cap in PG(4, 5) intersecting at least one plane
π in a conic. Let S1 and S2 be two solids through π with |S1 ∩ K| ≥ 24 and
|S2 ∩ K| ≥ 21, and let Q1 and Q2 be the two elliptic quadrics containing the
intersections S1 ∩ K and S2 ∩ K.

Then there exists a 4-dimensional non-singular parabolic quadric Q through
Q1 and Q2 containing at least two points of K \ (S1 ∪ S2) if |S1 ∩ K| = 26,
and containing at least one point of K \ (S1 ∪ S2) if |S1 ∩ K| ∈ {24, 25}.

Proof: Suppose that |S1∩K| = 26, then |(Q1∪Q2)∩K| = x ≥ 26+15 = 41.
A quadratic cone with base a non-singular 3-dimensional elliptic quadric

Q−(3, 5) has at most 52 points in common with K, so the two quadratic
cones in the pencil defined by Q1 and Q2 contain at most x + 2(52−x) ≤ 63
points of K. So at least 4 points of K lie on one of the parabolic quadrics
contained in the pencil. So one of those three parabolic quadrics contains at
least 2 points of K \ (Q1 ∪ Q2).

A similar argument discusses the case |S1 ∩ K| ∈ {24, 25}. 2

For a 4-dimensional parabolic quadric Q through Q1 ∪ Q2, the set Q \
(Q1 ∪ Q2) contains 156 − 46 = 110 points. So, when performing a computer
search for such a 67-cap K, we need to find at least 1 or 2 points of K within
a set of 110 points.

We now describe the starting configurations for the computer searches
which will eliminate the existence of particular caps K in PG(4, 5), inter-
secting at least one plane π in a conic, and such that at least two solids
through π intersect K in at least 21 points.

2.1 Two general starting configurations

Consider a non-singular 4-dimensional parabolic quadric Q = Q(4, 5) and
consider a plane π intersecting Q in a non-singular conic. This plane is the
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polar plane of a bisecant or external line to Q [26, Theorem 22.6.6]. This
shows that under the group PGO(5, 5) stabilizing Q, there are exactly two
orbits of planes intersecting Q in a non-singular conic.

A plane π intersecting Q in a non-singular conic corresponding to a bise-
cant polar line of Q, lies in six solids intersecting Q in respectively two tan-
gent cones, two elliptic and two hyperbolic quadrics. A plane π intersecting
Q in a non-singular conic corresponding to an external polar line of Q, lies
in six solids intersecting Q in respectively three elliptic and three hyperbolic
quadrics.

2.2 A plane corresponding to a bisecant polar line

Let Q : X2

1
− X0X2 + X3X4 = 0. Let π : X3 = X4 = 0, then π is the polar

plane of the bisecant 〈e3 = (0, 0, 0, 1, 0), e4 = (0, 0, 0, 0, 1)〉 to Q.
Let C = π ∩Q, then C lies in two elliptic quadrics, namely in the elliptic

quadrics

{

X3 = 2X4

X2

1
− X0X2 + 2X2

4
= 0,

and
{

X3 = 3X4

X2

1
− X0X2 + 3X2

4
= 0.

Using the subgroup G of the stabilizer group PGO(5, 5) which fixes the
pair {e3, e4} and Q, it is possible to assume that |K ∩ (X3 − 2X4 = 0)| ≥
|K ∩ (X3 − 3X4 = 0)| ≥ 21.

2.3 A plane corresponding to an external polar line

Let Q : X2

1
− X0X2 + X2

4
− 3X2

3
= 0. Let π : X3 = X4 = 0, then π is the

polar plane of the external line 〈e3, e4〉 to Q.
Let C = π ∩ Q, then C lies in three elliptic quadrics contained in Q.
The subgroup G of PGO(5, 5) which fixes the line 〈e3, e4〉 and fixes the

quadric Q acts as the symmetric group S3 on the three hyperplanes π1, π2, π3

through π intersecting Q in an elliptic quadric. So it is possible to select the
two hyperplanes π1 and π2 through π for which |K∩π1| ≥ |K∩π2| ≥ |K∩π3|,
without losing generality.

For π1 : X4 = 0 was selected and for π2 : X3 = X4.
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2.4 The computer search results

The preceding ideas were used to perform a computer search for caps in
PG(4, 5). This led to the following results.

Theorem 2.5 (a) There is no 67-cap K in PG(4, 5) for which there exist
two solids S1 and S2, where π = S1 ∩ S2 has a conic in common with K,
where S1 has at least 24 points in common with K and where S2 has at least
21 points in common with K.

(b) There is no 84-cap K in PG(4, 5) for which there exist two solids S1

and S2, where π = S1∩S2 has a conic in common with K, and where S1 and
S2 have at least 21 points in common with K.

These latter computer searches used the ideas of Lemma 2.4. Let Q−(3, 5)1

be the elliptic quadric containing K ∩ S1 and let Q−(3, 5)2 be the elliptic
quadric containing K ∩S2. In Case (a), it was possible to assume that there
is a parabolic quadric through Q−(3, 5)1 and Q−(3, 5)2 containing at least 2
points of K \ (S1 ∪ S2). In Case (b), it was possible to assume that there
is a parabolic quadric through Q−(3, 5)1 and Q−(3, 5)2 containing at least 6
points of K \ (S1 ∪ S2).

We now present further computer search results. We first explain a par-
ticular notation.

Let K be a cap of PG(4, 5) intersecting at least one plane π in a conic.
Let S1, . . . , S6 be the hyperplanes through π. Assume that |Si ∩ K| = si.
Then we say that K contains a conic plane of type (s1, . . . , s6).

Note that by Lemma 2.2, every 84-cap intersects at least one plane in a
conic.

Theorem 2.6 In PG(4, 5),
(a) there is no 82-cap having a conic plane of type (25, 18, 18, 18, 17, 16),
(a) there is no 84-cap having a conic plane of type (24, 19, 19, 19, 18, 15),
(c) there is no 84-cap having a conic plane of type (22, 20, 20, 20, 19, 13),
(d) there is no 84-cap having a conic plane of type (20, 20, 20, 18, 18, 18),

and
(e) there is no 89-cap having a conic plane of type (23, 20, 19, 19, 19, 19).

The preceding lemmas now imply that there are no 89-caps in PG(4, 5).

Theorem 2.7

m2(4, 5) ≤ 88.
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Proof: Assume that there is a 89-cap K in PG(4, 5). Then there is at least
one plane π sharing a conic with K (Lemma 2.2). The results of Theorem
2.5 show that π does not lie in two hyperplanes sharing at least 21 points
with K.

We now use the results of Theorem 2.6. Consider all possible types
(s1, . . . , s6), with s1 ≥ s2 ≥ s3 ≥ s4 ≥ s5 ≥ s6, for the conic plane π.

Then s1 ≥ 20, and by assumption, s2 ≤ 20. All possible types for the
conic plane lead to a contradiction.

For instance, assume that the type is (s1, . . . , s6) = (26, 20, 20, 20, 20, 13).
Then, by deleting 4 points, not in π, of the cap in the 26-hyperplane and one
point, not in π, in a 20-hyperplane, a 84-cap of conic type (22, 20, 20, 20, 19, 13)
is obtained. This contradicts Theorem 2.6 (c). 2

Corollary 2.8

66 ≤ m2(4, 5) ≤ 88.

2.5 Bounds on m2(N, 5)

We now present the known bounds on m2(N, 5), N > 4.

Theorem 2.9 For 5 ≤ N ≤ 9,

m2(N, 5) ≤ 4 · 5N−2 − 2 · 5N−3 −
7

2
· 5N−4 +

3

2
.

For 10 ≤ N ≤ 12,

m2(N, 5) ≤
5N · (N + 1)

N2
+ 4 · 5N−3 − 2 · 5N−4 −

7

2
· 5N−5 +

3

2
.

For N ≥ 13,

m2(N, 5) ≤
5N · (N + 1)

N2
+

3 · N · 5N−1

2 · (N − 1)2
.

Proof: The first formula arises from the formula of Hill [21]. The second
formula arises from the bound of Bierbrauer-Edel on caps in affine spaces [6]
plus the formula of Hill for a cap in a hyperplane in PG(N, q). The third
formula is from Theorem 1.1. 2

3 Caps in PG(N, 7)

In this section, we show that

(a) m′

2
(3, 7) = 32, so every 33-cap in PG(3, 7) is a subset of an elliptic

quadric, and

(b) 132 ≤ m2(4, 7) ≤ 238.
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3.1 The determination of m′
2(3, 7)

We describe how the exact value of m′

2
(3, 7) was determined.

It is known that every 7-cap in PG(2, 7) is contained in a conic [24,
Theorem 10.28]. The computer searches for complete n-caps K in PG(3, 7),
with n ≥ 33, first of all relied on this property.

We started from a bisecant L to K lying in two planes π1 and π2 sharing at
least 7 points with K. These latter planes intersect K in subsets of conics C1

and C2. Two conics, which share two distinct points and which lie in distinct
planes, define a pencil of quadrics in PG(3, 7). The pencils of quadrics in
PG(3, q) were classified by Bruen and Hirschfeld. In [9, Theorem 4.4], they
showed that there exist precisely two distinct pencils of quadrics intersecting
in two distinct conics in two distinct planes, where these two conics share
two distinct points. Their results [9, p. 262, Cases 3(c)(i) and 3(c)(iii)] imply
that we can assume that C1 and C2 are one of the following:

{

X0X1 = 0
X2

0
+ X2

1
+ X2X3 = 0,

and
{

X0X1 = 0
X2

0
− X2

1
+ X2X3 = 0.

We now prove that for caps of size at least 37, this bisecant L and these
latter two planes π1 and π2 really exist.

Lemma 3.1 Every bisecant of an n-cap K in PG(3, 7) of size at least 37
lies in at least two planes π1 and π2 containing at least 7 points of K.

Proof: A bisecant lies in 8 planes; so one of those planes contains at least
2+35/8 > 6 points of K. Denote this plane by π1. Then there is still a second
plane π2 through the bisecant containing at least 2+29/7 > 6 points of K. 2

We determined the stabilizer group G of the two possible configurations
C1∪C2. The stabilizer group G has in both cases transformations interchang-
ing C1 and C2, acts in both cases transitively on the 6 points in C1 \ C2, so
if |C1 ∩ K| = 7, then these results show that it is possible to select, without
losing generality, the unique point of C1 \ K. Once this point r is selected,
the stabilizer group H = Gr has two orbits on C2 \ C1.

For the different cases, (|C1 ∩ K|, |C2 ∩ K|) = (8, 7), and |C1 ∩ K| =
|C2 ∩ K| = 7, representatives were determined, and then, also for the case
|C1 ∩ K| = |C2 ∩ K| = 8, computer searches were performed to find the size
of the largest complete caps extending these starting configurations.

These computer searches showed:
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Lemma 3.2 (i) There is no complete n-cap K, with 33 ≤ n ≤ 49, sharing
7 points with C1 and C2, and containing the two points of C1 ∩ C2.

(ii) There is no complete n-cap K, with 34 ≤ n ≤ 49, sharing 8 points
with C1 and 7 points with C2.

(iii) There is no complete n-cap K, with 35 ≤ n ≤ 49, sharing 8 points
with C1 and C2.

This now implies the following result.

Lemma 3.3 m′

2
(3, 7) ≤ 34.

Proof: The preceding two lemmas already imply that m′

2
(3, 7) ≤ 36 (Lemma

3.1).
Assume that there is a complete 36-cap K in PG(3, 7), then the preced-

ing lemma implies that a bisecant lies in at most one plane sharing at least
7 points with K. This then implies that every bisecant lies in exactly one
plane sharing 8 points with K. So the number of bisecants 36 · 35/2 to a
36-cap must be a multiple of 8 · 7/2, which is the number of bisecants to a
8-cap in a plane. This is however false.

Assume that there is a complete 35-cap K in PG(3, 7), then the preceding
lemma implies that every bisecant lies in either:

(a) one plane sharing 8 points with K, one plane sharing 5 points with K,
and in 6 planes sharing 6 points with K, or

(b) one plane sharing 7 points with K and 7 planes sharing 6 points with
K.

Let u be the number of planes containing 8 points of K, let v be the
number of planes sharing 7 points with K, and let w be the number of
planes sharing 5 points with K. By counting the bisecants in two ways, we
obtain:

u · 8 · 7/2 + v · 7 · 6/2 = 35 · 34/2

w · 5 · 4/2 + v · 7 · 6/2 = 35 · 34/2.

The unique solution to this system of equations, consisting of non-negative
integers, is (u, v, w) = (10, 15, 28).

We now count the number N of ordered pairs (π, p), where π is a plane
containing 8 or 7 points of K, where p ∈ K, and where p ∈ π. Necessarily
N = 10 · 8 + 15 · 7 = 185.
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On the other hand, let n(p) be the number of planes through p ∈ K
containing 8 or 7 points of K. As two such planes through p have no other
point of K in common, n(p) < 6.

So N =
∑

p∈K n(p) ≤ 35 · 5 = 175. A contradiction is obtained. 2

To prove that m′

2
(3, 7) = 32, we still have to exclude the existence of

complete 33- and 34-caps. Computer searches gave the following results.

Lemma 3.4 (1) There is no complete 33-cap K in PG(3, 7) having a bise-
cant lying simultaneously in a plane π1 which shares 8 points with K and
lying in a plane π2 which shares 7 points with K.
(2) There is no complete 33-cap or complete 34-cap K in PG(3, 7) having a
bisecant lying in two planes which share 8 points with K.

Theorem 3.5 m′

2
(3, 7) = 32.

Proof: Assume that there exists a complete 34-cap K. The preceding
computer search results show that a bisecant lies in either:

(a) one plane sharing 8 points with K, one plane sharing 4 points with K,
and six planes sharing 6 points with K,

(b) one plane sharing 8 points with K, two planes sharing 5 points with
K, and five planes sharing 6 points with K,

(c) one plane sharing 7 points with K, one plane sharing 5 points with K,
and six planes sharing 6 points with K,

(d) eight planes sharing 6 points with K.

Let a, b, c, d denote respectively the number of bisecants of type (a), (b),
(c) and (d). Let si be the number of incident ordered pairs (bisecant L, plane
containing i points of K). This number si is a multiple of i(i − 1)/2. Then
the following equations are valid:

a + b = s8

c = s7

6a + 5b + 6c + 8d = s6

2b + c = s5

a = s4

a + b + c + d = 34 · 33/2.
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Let hi be the number of planes containing i points of K, then hi =
si/(i(i − 1)/2).

Count the number N of pairs (π, p), where p ∈ K, where π is a plane
containing 7 or 8 points of K, and where p ∈ π. Then N = 8h8 + 7h7.

On the other hand, for p ∈ K, let n(p) be the number of planes through
p containing 8 or 7 points of K. As two such planes through p do not share
a second point of K, necessarily n(p) ≤ 33/6 < 6. So

8h8 + 7h7 ≤ 34 · 5.

Using the same counting method as in the previous paragraph, but now
only for the planes π containing 8 points of K, we obtain

8h8 ≤ 34 · 4,

and the same counting argument, but now for the planes π containing 7 or
4 points of K, implies

7h7 + 4h4 ≤ 34 · 11.

Moreover

h4 + h5 + h6 + h7 + h8 ≤ (74 − 1)/(7 − 1).

The planes containing less than 4 points of K contain 0 or 1 points of K.
There are 171 solutions (h4, h5, h6, h7, h8) to the equations above. Con-

sider these solutions, together with the possible solutions for h0 and h1. It is
sufficient to calculate

8
∑

i=0

hi =
74 − 1

7 − 1
,

8
∑

i=0

ihi = 34 ·
73 − 1

7 − 1
,

to obtain a contradiction for all of these solutions.

Assume that there exists a complete 33-cap K. The preceding computer
search results show that a bisecant lies in either:

(a) one plane sharing 8 points with K, one plane sharing 3 points with K,
and six planes sharing 6 points with K,

(b) one plane sharing 8 points with K, one plane sharing 4 points with K,
one plane sharing 5 points with K, and five planes sharing 6 points
with K,
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(c) one plane sharing 8 points with K, three planes sharing 5 points with
K, and four planes sharing 6 points with K,

(d) one plane sharing 7 points with K, one plane sharing 4 points with K,
and six planes sharing 6 points with K,

(e) one plane sharing 7 points with K, two planes sharing 5 points with
K, and five planes sharing 6 points with K,

(f) one plane sharing 5 points with K and seven planes sharing 6 points
with K.

Let a, b, c, d, e, f denote respectively the number of bisecants of type (a),
(b), (c), (d), (e) and (f). Using the same notations si, hi, n(p) as above, the
following equations are obtained:

a + b + c = s8

d + e = s7

6a + 5b + 4c + 6d + 5e + 7f = s6

b + 3c + 2e + f = s5

b + d = s4

a = s3

a + b + c + d + e + f = 33 · 32/2.

Count the number N of pairs (π, p), where p ∈ K, where π is a plane
containing 7 or 8 points of K, and where p ∈ π. Then N = 8h8 + 7h7.

The same argument as for the complete 34-caps gives n(p) ≤ 32/6 < 6,
so

8h8 + 7h7 ≤ 33 · 5.

Similarly, the same counting methods as in the previous paragraph imply

8h8 ≤ 33 · 4,

7h7 + 3h3 ≤ 33 · 16,

4h4 ≤ 33 · 10,

3h3 + 4h4 ≤ 33 · 16,

7h7 ≤ 33 · 5.

Moreover

h3 + h4 + h5 + h6 + h7 + h8 ≤ (74 − 1)/(7 − 1).
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The planes containing less than 3 points of K contain 0 or 1 points of K.
Proceeding as for the complete 34-caps, all solutions (h0, h1, h3, h4, . . . , h8)

lead to a contradiction.
So m′

2
(3, 7) ≤ 32. During the computer searches, complete 32-caps were

found. So
m′

2
(3, 7) = 32.

2

3.2 Caps in PG(4, 7)

We now use the preceding result to improve the known upper bound m2(4, 7) ≤
316 to m2(4, 7) ≤ 238. This is achieved by eliminating the existence of 239-
caps. We will rely on geometrical arguments and on computer search results.
The results of the preceding theorem already imply the following lemma.

Lemma 3.6 Let K be a 215-cap of PG(4, 7). Then every plane of PG(4, 7)
intersects K in a subset of a conic.

Proof: The only caps in PG(2, 7) not contained in a conic, are complete
6-caps [24, p. 376]. Assume that a plane intersects K in a complete 6-cap,
then every solid through this plane intersects K in at most a 32-cap. So
|K| ≤ 6 + 8 · 26 = 214. 2

To eliminate the existence of 239-caps in PG(4, 7), we will prove that if
there is a 239-cap K in PG(4, 7), then there is a 4-dimensional parabolic
quadric Q(4, 7) or a cone rQ−(3, 7), with vertex r and a non-singular 3-
dimensional elliptic quadric Q−(3, 7) as base, containing at least 101 points
of K. This is however impossible since such quadrics in PG(4, 7) contain at
most 100-caps, as is shown by the following lemma.

Lemma 3.7 A non-singular 4-dimensional parabolic quadric in PG(4, q)
and a cone rQ−(3, q), with vertex r and a non-singular 3-dimensional el-
liptic quadric Q−(3, q) as base, contain at most 2(q2 + 1)-caps.

Proof: Every line of the quadratic cone rQ−(3, q) contains at most 2 points
of a cap, so such a quadric trivially contains at most 2(q2 +1)-caps. To prove
the result for a 4-dimensional parabolic quadric Q(4, q), we note that every
generator of Q(4, q) contains at most 2 points of a cap, and that every point
of Q(4, q) lies on q + 1 generators of Q(4, q). So if K is a cap contained in
Q(4, q), then a double counting argument implies that

|K|(q + 1) ≤ 2(q3 + q2 + q + 1),

14



where q3 + q2 + q + 1 is the number of generators of Q(4, q). This implies
that |K| ≤ 2(q2 + 1). 2

Remark 3.8 The preceding upper bound on the size of caps in the 4-
dimensional parabolic quadric Q(4, q) of PG(4, q) is sharp since Q(4, q) con-
tains 2(q2 + 1)-caps.

This follows from results of Drudge [11] and Ebert [12].
They constructed for respectively q even and for q odd sets of 2(q2+1) lines

of PG(3, q) doubly covering the points of PG(3, q). These latter 2(q2 + 1)
lines are totally isotropic lines of a symplectic polarity of PG(3, q). This
implies that under the Klein correspondence, the Plücker coordinates of these
2(q2 + 1) lines define 2(q2 + 1) points of a 4-dimensional parabolic quadric
Q(4, q) on the Klein quadric. Since these lines doubly cover the points of
PG(3, q), the corresponding Plücker coordinates define a 2(q2 + 1)-cap on
this 4-dimensional parabolic quadric.

To find a quadric containing at least 101 points of a 239-cap K, we first
of all use the arguments of Nagy and Szőnyi [29]. We first of all determine a
first solid α1 intersecting K in a subset of an elliptic quadric Q1. We consider
a plane π of α1 having a large number of points in common with α1 ∩K. We
then determine a second solid α2 through π intersecting K in a subset of an
elliptic quadric Q2.

The two 3-dimensional quadrics Q1 and Q2 determine a pencil of eight 4-
dimensional quadrics. One of those 4-dimensional quadrics is the union α1 ∪
α2. The other seven 4-dimensional quadrics are non-singular 4-dimensional
parabolic quadrics, or are cones rQ−(3, 7). Every point of PG(4, 7) \ (α1 ∪
α2) belongs to exactly one of those quadrics. We will select one point r of
K \(α1∪α2). This determines one quadric Q of the pencil of quadrics defined
by Q1 and Q2. We will show that this latter quadric Q contains at least 101
points of K; thus giving us the desired contradiction.

This will be achieved in the following way.

1. Select a fixed point p of K ∩ π.

2. Consider all solids through the line pr. We will show that there are at
least two solids α3 and α∗

3
through pr satisfying the following conditions:

(a) α3 and α∗

3
intersect K in subsets of elliptic quadrics Q3 and Q∗

3
,

(b) both α3 and α∗

3
intersect Q1 and Q2 in distinct conics containing

at least 5 points of K.
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The elliptic quadrics Q3 and Q∗

3
then share two distinct conics with Q,

and also share the point r with Q. From Bézout’s theorem, Q3 and Q∗

3
are

contained in Q.
By the lower bounds on |α1∩K|, |α2∩K|, |α3∩K|, and |α∗

3
∩K|, following

from the size 239 of the 239-cap, it then follows that Q contains a 101-cap,
which is impossible.

To achieve this contradiction, we rely on the following computer search
results.

Lemma 3.9 (i) A point p of a 50-, 49-, 48-, or 47-cap in PG(3, 7) lies on
exactly one plane intersecting this latter cap in at most 4 points.

(ii) A point p of a 46-, 45-, or 44-cap in PG(3, 7) lies on at most two
planes intersecting this latter cap in at most 4 points.

(iii) A point p of a 43- or 42-cap in PG(3, 7) lies on at most three planes
intersecting this latter cap in at most 4 points.

(iv) A point p of a 41-, 40-, 39-, 38-, 37-, or 36-cap in PG(3, 7) lies on
respectively at most four, six, seven, eight, ten, eleven planes intersecting this
latter cap in at most 4 points.

The following result is also valid.

Lemma 3.10 Every 32-cap in PG(3, 7) has a 7- or 8-plane.

Proof: Assume that there are at most 6-planes, then a bisecant lies in
(6, 6, 6, 6, 6, 6, 6, 4)- or (6, 6, 6, 6, 6, 6, 5, 5)-planes.

Let a be the number of bisecants of the first type and let b be the number
of bisecants of the second type. Then,

7a + 6b = 15 · h6

2b = 10 · h5

a = 6 · h4

a + b = 496.

Then the second equation implies that 5|b and then the first two equations
imply that 5|a. But then the fourth equation implies that 5 divides 496. This
is false. 2

Other computer searches led to the following conclusions. In these com-
puter searches, we relied on the fact that caps in PG(3, 7), of size at least
33, are subsets of elliptic quadrics (Theorem 3.5).
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Lemma 3.11 (i) There are 33-caps in PG(3, 7) having at most 7-planes.
(ii) All 34-caps in PG(3, 7) have at least one 8-plane.
(iii) Every 35-cap in PG(3, 7) contains a pair of different 8-planes inter-

secting in a bisecant of the 35-cap. This latter property is not always valid
for a 34-cap in PG(3, 7).

This led to the following conclusions.

Theorem 3.12 In PG(4, 7), every
(i) 174-cap K has at least one 6-, 7-, or 8-plane,
(ii) 207-cap K has at least one solid sharing at least 32 points with K,

and so has a 7- or 8-plane,
(iii) 216-cap K has at least one solid sharing at least 34 points with K,

and so has an 8-plane,
(iv) 219-cap K has at least one solid α1 sharing at least 34 points with K

and at least one solid α2 sharing at least 33 points with K, and where α1∩α2

shares 8 points with K.

Proof: (i) If there are no 6-, 7-, or 8-planes, then counting the number of
points of K in the planes through a bisecant to K gives |K| ≤ 2+57·3 = 173.

(ii) A 207-cap has a 6-, 7-, or 8-plane. If all solids through a 6-plane
contain at most 31 points of K, then |K| ≤ 6 + 8 · (31− 6) = 206. A similar
counting argument can be done for 7- and 8-planes. It follows that at least
one solid shares at least 32 points with K. Hence, a 207-cap has a 7- or
8-plane.

(iii) A 216-cap has a 7- or 8-plane. If they do not lie in a solid sharing
at least 34 points with K, then |K| ≤ 215. So a 216-cap K has at least one
solid intersecting K in at least 34 points, and so K has an 8-plane (Lemma
3.11).

(iv) A 219-cap has an 8-plane π. Assume that π lies in a 50-hyperplane
and that all other hyperplanes through π share at most 32 points with K,
then |K| ≤ 50 + 7 · (32− 8) = 218. So a 219-cap has an 8-plane and through
this plane pass at least two solids sharing at least 33 points with K. By
the preceding paragraph, at least one hyperplane intersects K in at least 34
points, and this hyperplane has an 8-plane, so starting from this plane, this
part is also proven. 2

Lemma 3.13 Let π be a plane intersecting a cap K of PG(4, 7) in at least
5 points, and let α1 and α2 be solids through π intersecting K in subsets of
elliptic quadrics Q1 and Q2. Let p be a point of π ∩ K, and let r be a point
of K \ (α1 ∪ α2). Let α3 and α∗

3
be two solids, different from 〈π, r〉, through
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pr intersecting K in subsets of elliptic quadrics Q3 and Q∗

3
, and intersecting

α1 and α2 in planes containing at least 5 points of K.
Let n1 = |α1 ∩ K|, n2 = |α2 ∩ K|, n3 = |α3 ∩ K|, and n∗

3
= |α∗

3
∩ K|.

Then
n1 + n2 + n3 + n∗

3
− 45 ≤ 100.

Proof: The two elliptic quadrics Q1 and Q2 define a pencil of 4-dimensional
quadrics. Exactly one of those quadrics Q contains the point r. The elliptic
quadric Q3 shares two distinct conics with Q and also shares the point r with
Q. By Bézout’s theorem, Q3 is contained in Q. Similarly, Q∗

3
is contained in

Q.
We now use the generalized inclusion-exclusion principle to find a lower

bound on |Q ∩ K|. This latter lower bound is

n1 + n2 + n3 + n∗

3
− 6 · 8 + a3 − a4,

with a3 the sum of the intersection sizes of the intersections of three of those
solids with K, and with a4 the intersection size of the intersection of all four
solids with K. The negative contribution 6·8 comes from the fact that planes
which are the intersection of two distinct solids share at most 8 points with
K.

Since π 6⊂ α3, necessarily α1 ∩ α2 ∩ α3 ∩ α∗

3
is at most a line through

p, so a4 ≤ 2. It is also trivial that the intersection of three of the solids
α1, α2, α3, α

∗

3
shares at least a4 points with K, so the lower bound becomes

n1 + n2 + n3 + n∗

3
− 6 · 8 + 4 · a4 − a4.

Since a4 ≥ 1, necessarily, by Lemma 3.7,

100 ≥ |Q ∩ K| ≥ n1 + n2 + n3 + n∗

3
− 45.

2

We now present the ideas leading to the exclusion of 239-caps in PG(4, 7).
These ideas are based on the results of the preceding lemma. In the follow-
ing description of the method, we assume the size of the cap K to be large
enough to get the desired contradiction. The precise value for the size of K
is given in Table 3.

Part 1. Let y ≥ 33 be the maximal size of a solid intersection of an
n-cap K in PG(4, 7). We also assume that x ≥ 33, with x ≤ y, is the largest
size of a solid intersection of K, intersecting a y-solid in a plane sharing at
least 5 points with K (Theorem 3.12).
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Let α1 be a hyperplane sharing y points with K, and consider a plane π
of α1 sharing at least 5 points with K. We select π and α1 in such a way
that |π ∩K| ≥ 5, |α1 ∩K| = y, and |α2 ∩K| = x, where α2 is a second solid
through π.

Consider the notations and geometrical setting of the preceding lemma.
From Lemma 3.9, we know the upper bound ay on the number of solids
through pr intersecting α1 in a plane sharing at most 4 points with K. These
latter, at most ay, solids share at most y points with K. All the remaining
solids through pr intersect α1 in a plane sharing at least 5 points with K,
and so share at most x points with K.

From Lemma 3.9, we know the upper bound ax on the number of solids
through pr intersecting α2 in a plane sharing at most 4 points with K. At
most ax solids through pr intersect α1 in a plane sharing at least 5 points
with K, but intersect α2 in a plane sharing at most 4 points with K. These
latter, at most ax, solids cannot be used to play the role of the solids α3 and
α∗

3
, and contain at most x points of K.
The solid 〈π, r〉 also cannot be used to play the role of one of the solids

α3 and α∗

3
. This latter solid also contains at most x points of K. There still

remain 57 − ay − ax − 1 solids through pr.
The remaining solids through pr can be used to play the role of the solids

α3 or α∗

3
if they contain more than 32 points of K. Suppose that the largest

solid intersection of these latter solids with K is equal to n3 and that the
second largest solid intersection of these latter solids with K is equal to n∗

3
.

We first of all assume that x ≥ n3 ≥ n∗

3
> 32; the case n3 ≥ 33 and n∗

3
≤ 32

is discussed in Part 3, while the case n3 ≤ 32 is discussed in Part 4.
We count in all three cases the number of ordered pairs (s, α), where

s ∈ K, where α is a solid through pr, and where s ∈ α. This number is equal
to

(|K| − 2) · 8 + 2 · 57. (1)

Part 2. Assume that n3 ≥ n∗

3
> 32.

Then, by Lemma 3.13,

y + x + n3 + n∗

3
≤ 145

y + x + 2n∗

3
≤ 145

which implies that

n∗

3
≤ ⌊

145 − y − x

2
⌋,

where ⌊x⌋ denotes the largest integer smaller than or equal to x.
Note that, by the assumptions on n3 and n∗

3
, this case only occurs if

effectively 33 ≤ (145 − y − x)/2.
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All the remaining solids through pr contain at most n∗

3
points of K. So,

from Part 1,

ay · y + (ax + 1) · x + n3 + n∗

3
+ (57 − ay − ax − 3) · ⌊

145 − y − x

2
⌋

≤ (ay − 1)y + axx + y + x + n3 + n∗

3
+ (57 − ay − ax − 3)⌊

145 − y − x

2
⌋

≤ (ay − 1)y + axx + 145 + (57 − ay − ax − 3)⌊
145 − y − x

2
⌋ (2)

is an upper bound for (1).
Part 3. If n3 ≥ 33, but all the remaining solids through pr intersect K

in at most n∗

3
≤ 32 points, then we cannot use formula (2) since we are not

sure that the solid α∗

3
exists intersecting K in a subset of an elliptic quadric,

so we cannot rely on Lemma 3.13.
We have in this case the following upper bound on the number of inci-

dences (s, α), where s ∈ K and where α is a solid through pr:

ay · y + (ax + 1) · x + n3 + (57 − ay − ax − 2) · 32

≤ ay · y + (ax + 2) · x + (57 − ax − ay − 2) · 32, (3)

since x ≥ n3.

Part 4. There still remains one case, namely n3 ≤ 32. Then all the
remaining solids through pr share at most 32 points with K, so (3) again is
an upper bound for (1).

Lemma 3.14 Let K be a cap in PG(4, 7) intersecting a plane π in at least
five points, and intersecting two solids α1 and α2 through π in subsets of
elliptic quadrics Q1 and Q2 in α1 and α2.

Assume that |(α1 ∪ α2) ∩ K| = z. Then

z +
|K| − z

7
≤ 100.

Proof: The two elliptic quadrics Q1 and Q2 define a pencil of 4-dimensional
quadrics in PG(4, 7). One of these quadrics is the union α1 ∪ α2. The
other seven 4-dimensional quadrics of this pencil of quadrics are non-singular
parabolic quadrics or cones with a point as vertex and a non-singular 3-
dimensional elliptic quadric as base. These quadrics contain at most 100-caps
of PG(4, 7) (Lemma 3.7).

Since one of those seven quadrics contains at least z +(|K|− z)/7 points,
necessarily

z +
|K| − z

7
≤ 100.
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Remark 3.15 First of all, using Lemma 3.14, we eliminated some pairs
(y, x) for |K| = 239. For the remaining pairs (y, x), Table 3 shows the small-
est value of |K| for which the upper bounds (2) and (3) give a contradiction,
when compared to the exact value (|K| − 2) · 8 + 2 · 57.

For the values for |K|, y, x, which are preceded by !, the size of |K| arises
from formula (3).

|K| y x |K| y x |K| y x

! 225 48 36 ! 226 44 36 ! 229 41 40
! 226 47 37 ! 227 43 41 ! 229 41 39
! 225 47 36 ! 228 43 40 233 41 38
! 227 46 38 ! 228 43 39 233 41 37
! 227 46 37 ! 228 43 38 ! 230 40 40
! 226 46 36 ! 228 43 37 235 40 39
! 227 45 39 232 43 36 234 40 38
! 227 45 38 ! 226 42 42 239 40 37
! 227 45 37 ! 227 42 41 235 39 39
! 226 45 36 ! 228 42 40 239 39 38
! 227 44 40 ! 228 42 39 239 39 37
! 227 44 39 ! 228 42 38 239 38 38
! 227 44 38 232 42 37 243 38 37
! 227 44 37 ! 228 41 41 243 37 37

Table 3

The preceding table shows that 239-caps cannot exist unless (y, x) =
(38, 37) or (y, x) = (37, 37).

This latter case is eliminated by the following ideas.

Assume that there is a 239-cap K in PG(4, 7) having at most 37-solids.
Through an 8-plane of K (Theorem 3.12), there are seven 37-solids and one
36-solid.

Consider a 36-solid α0. In α0, we find a pair π1, π2 of 8-planes intersecting
in the bisecant L of K (Lemma 3.11). Let αi, i = 0, . . . , 7, be the 36-solid α0

and the seven 37-solids through π1, and let βi, i = 0, . . . , 7, be the 36-solid
β0 = α0 and the seven 37-solids through π2.

Consider the planes through L of a solid βi, i > 0. At least five of those
planes through L share more than four points with K. One of those planes
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is π2 which lies in β0 = α0. The other planes of βi through L correspond to
the intersections of the solids αj, j > 0, with βi. This shows that each of the
solids βi, i = 1, . . . , 7, intersects at least four of the 37-solids αi, i > 0, in a
plane containing at least five points of K.

This implies that it is possible to find two solids βi, βi′ , with i, i′ > 0, and
two solids αj, αj′ , with j, j′ > 0, such that |βi ∩ αj ∩ K|, |βi ∩ αj′ ∩ K|, |βi′ ∩
αj ∩ K|, |βi′ ∩ αj′ ∩ K| ≥ 5.

Select a point r of π2 \ L belonging to K. The solid intersections αj ∩
K,αj′ ∩ K and the point r define a unique 4-dimensional quadric Q, also
containing the elliptic quadrics containing the solid intersections βi ∩K and
βi′ ∩ K.

Taking into account that three of the solids αj, αj′ , βi, βi′ intersect in the
bisecant L to K, the generalized inclusion-exclusion principle applied to the
37-solids αj, αj′ , βi, βi′ shows that Q contains at least

4 · 37 − 6 · 8 + 4 · 2 − 2 = 106

points of K. This is false (Lemma 3.7).
So there is no 239-cap in PG(4, 7) having at most 37-solids.

Assume that (y, x) = (38, 37) for a 239-cap K. Consider an 8-plane in a
38-solid (Lemma 3.11). Through this 8-plane, there either pass:

(a) one 38-solid, six 37-solids, and one 35-solid, or
(b) one 38-solid, five 37-solids, and two 36-solids.

Consider the first possibility (a). Let α0 be the 35-solid. In α0, we again
find a pair π1, π2 of 8-planes intersecting in the bisecant L of K (Lemma
3.11). Let αi, i = 0, . . . , 7, be the 35-solid α0, the six 37-solids and the 38-
solid through π1, and let βi, i = 0, . . . , 7, be the 35-solid β0 = α0, the six
37-solids and the 38-solid through π2.

Consider the planes through L of a solid βi, i > 0. At least five of those
planes through L share more than four points with K. One of those planes
is π2 which lies in β0 = α0. The other planes of βi through L correspond to
the intersections of the solids αj, j > 0, with βi. This shows that each of the
solids βi, i = 1, . . . , 7, intersects at least four of the 37-solids and the 38-solid
αi, i > 0, in a plane containing at least five points of K.

This leads again to the contradiction as obtained for 239-caps having at
most 37-solids.

Consider now possibility (b), where we assume that there are no 35-
solids. Recall that every 35-solid has at least one 8-plane (Lemma 3.11).
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Consider a 36-solid α0. We proceed as before, but it could happen that
{|αj ∩K|, |αj′ ∩K|} = {36, 37} or that {|βi ∩K|, |βi′ ∩K|} = {36, 37}. This
does not impose any problems in the arguments of the case (y, x) = (37, 37).
The inclusion-exclusion principle still implies that the quadric Q would con-
tain at least 104 points of K, which is impossible (Lemma 3.7).

So also the case (y, x) = (38, 37) does not occur for 239-caps in PG(4, 7).

This leads to the following improvement to the known upper bound on
m2(4, 7). In PG(4, 7), a 132-cap exists [15].

Corollary 3.16

132 ≤ m2(4, 7) ≤ 238.

3.3 Bounds on m2(N, 7)

We now present the known bounds on m2(N, 7), N > 4.

Theorem 3.17 For 5 ≤ N ≤ 12,

m2(N, 7) ≤ 5 · 7N−2 −
25

3
· 7N−4 +

4

3
.

For 13 ≤ N ≤ 17,

m2(N, 7) ≤
7N · (N + 1)

N2
+ 5 · 7N−3 −

25

3
· 7N−5 +

4

3
.

For N ≥ 18,

m2(N, 7) ≤
7N · (N + 1)

N2
+

3 · N · 7N−1

2 · (N − 1)2
.

Proof: The first formula arises from the formula of Hill [21]. The second
formula arises from the bound of Bierbrauer-Edel on caps in affine spaces [6]
plus the formula of Hill for a cap in a hyperplane of PG(N, q). The third
formula is from Theorem 1.1. 2
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