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Abstract. Let f : F n
2 → F n

2 be an almost perfect nonlinear function (APN).
The set Df := {(a, b) : f(x + a) − f(x) = b has two solutions} can be used
to distinguish APN functions up to equivalence. We investigate the multiplier
groups of theses sets Df . This extends earlier work done by the authors [1].

1 Introduction

The investigation of highly nonlinear functions is of interest in cryptography. We do not
want to go into details about applications of highly nonlinear functions, but we refer to
the literature, in particular [2, 3].

There are several concepts of nonlinearity. Here we focus on differential nonlinear-
ity. If f : F n

2 → F n
2 is linear, then

f(x+ a)− f(x) = b (1)

has 0 or 2n solutions (we have 2n solutions if b = f(a)). In order to be “as nonlinear as
possible”, the maximum number of solutions to (1) should be small for a 6= 0. We have
f(x+ a)− f(x) = f((x+ a) + x)− f(x+ a) (note that the computations are done in
a vector space over F2), hence if x is a solution of (1), then x+ a is a solution, too, so
the number of solutions is always even. This motivates the following definition:

Definition 1. A function f : F n
2 → F n

2 is called almost perfect nonlinear or APN if
the equations

f(x+ a)− f(x) = b

have 0 or 2 solutions for all a, b ∈ F n
2 , a 6= 0.

The main goal in the investigation of APN functions are constructions. There are
by now many constructions known (they are summarized in [3]), hence it is necessary
to find powerful methods how to distinguish APN functions. There are several papers
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which survey some possible ways to distinguish functions up to equivalence ([4–6, 1,
7]). Here we will investigate the sets

Df := {(a, b) : f(x+ a)− f(x) = b has two solutions}. (2)

If f and g are equivalent (we will explain different concepts of equivalence in Section
2), then the sets Df and Dg are, in a certain sense, equivalent. Hence inequivalence of
the sets Df and Dg implies inequivalence of the functions f and g. We will investi-
gate, in particular, the multiplier group. Together with the so called triple intersection
numbers, the sets Df seem to be appropriate to distinguish equivalence classes of f .
In Section 4, we summarize our computational results and pose some (what we think)
interesting questions.

If f is an almost bent function (Definition 5), then the set Df is a Hadamard differ-
ence set, equivalently its indicator function F n

2 × F n
2 → C is a bent function. There-

fore, the ideas which we are going to develop in this note may be applied not just to the
sets Df constructed from APN functions but to arbitrary bent functions or Hadamard
difference sets. We expect that it is possible to characterize certain highly symmetric
bent functions by the automorphism or multiplier groups of the corresponding designs
or difference sets. In this context, we refer to the interesting paper [8] which explains
the orders of the multiplier groupsM(Df ) for the Gold power mappings if n is odd.
Moreover, it shows that the designs Df , hence also the functions f , are not equivalent
for different Gold power mappings (if n is odd), see also [7]

In this paper, we investigate different concepts of equivalence for different types of
structures. Table 1 summarizes our notation.

Table 1. Different types of equivalence

type of equivalence reference remark
graph equivalence of f and g Definition 2 f, g : F n

2 → F n
2

multiplier equivalence of A and B Definition 3 A, B ∈ C[G]

design equivalence of A and B Definition 4 A, B ∈ C(n,n) or A, B ∈ C[G]

If f : F n
2 → F n

2 , then graph equivalence is the same as multiplier equivalence for
the sets Gf and Gg (Remark 3). Multiplier equivalence always implies design equiva-
lence (5), but not vice versa (Example 1). We note that there is no concept of “multiplier
equivalence” for arbitrary matrices A ∈ C(n,n).

We will discuss these types of equivalence for the sets Gf and Df related to APN
functions f . Table 2 shows the known implications between these equivalences.

This paper is partly motivated by the question whether the converse of any of these
implications hold. To the best of our knowledge, there is no example of a pair of APN
functions f and g which violates any of the possible converse implications in the dia-
gram Table 1.



Table 2. Dependencies between equivalences of Gf and Df

Gf multiplier equivalent to Gg ⇒ Gf design equivalent to Gg

⇓ ⇓
Df multiplier equivalent to Dg ⇒ Df design equivalent to Dg

2 APN functions

The most important definition for this paper is Definition 1. In order to investigate APN
functions, group rings are an adequate algebraic tool.

Let K be a field, and let G be a (multiplicatively written) abelian group. In this
paper, K will be almost exclusively the field C of complex numbers, and the group will
be in most cases an elementary abelian group whose order is a power of 2.

The set of formal sums ∑
g∈G

ag · g, ag ∈ K

is called the group algebra K[G], where addition and multiplication on K[G] is defined
as follows: (∑

g∈G
ag · g

)
+
(∑
g∈G

bg · g
)

:=
∑
g∈G

(ag + bg) · g

and (∑
g∈G

ag · g
)
·
(∑
g∈G

bg · g
)

:=
∑
g∈G

(∑
h∈G

ahbgh−1

)
· g.

Moreover,
λ ·
(∑
g∈G

ag · g
)

:=
∑
g∈G

(λag) · g

for λ ∈ K.
A subset A of G can be identified with the group algebra element

∑
g∈A g, which

we denote (by abuse of notation) by A, again. If f : F n
2 → F n

2 is a mapping, then
its associated graph Gf is the set {(x, f(x)) : x ∈ F n

2 } which is a subset of G =
F n

2 ×F n
2 . We denote the corresponding group algebra element in C[G] byGf , too. InG,

we denote the subgroup {(x, 0) : x ∈ F n
2 } by H , and the subgroup {(0, x) : x ∈ F n

2 }
by N . The following proposition is obvious:

Proposition 1. Let f : F n
2 → F n

2 . Then f is APN if and only if there is a subset Df in
G = F n

2 × F n
2 such that

G 2
f = 2n + 2 ·Df . (3)

Remark 1. The setDf contains no element of the form (0, x), x ∈ F n
2 , henceDf∩N =

{ }. Therefore, N is sometimes called a forbidden subgroup.

Proposition 1 shows that we may construct many more APN functions from a given
one by applying affine transformations toGf . Functions which can be constructed from
f in this way are called equivalent to f . More precisely, we have



Definition 2. Two functions f, g : F n
2 → F n

2 are called graph equivalent if there is an
automorphism ϕ of G = F n

2 × F n
2 and an element g ∈ G such that ϕ(Gf ) = Gg + g.

Here “addition plus g” means that we add g to all elements of Gf , hence it is not
“addition” in the group algebra.

Remark 2. If g = (a, b), a, b ∈ F n
2 , then Gf + g is the graph of the mapping x 7→

f(x+ a) + b.

Definition 3. Let G be a multiplicatively written abelian group. We say that two group
algebra elements A and B in C[G] are multiplier equivalent if there is a group auto-
morphism ϕ of G such that ϕ(A) = Bg for some g ∈ G. Note that we have to write
B · g instead of “B + g” since we write G multiplicatively. In Definition 2, the group
was written additively.

Remark 3. The terminology “multiplier equivalence” is motivated by the investigation
of difference sets, see [4] or [9], for instance. Note that graph equivalence for two func-
tions f and g is the same as multiplier equivalence of Gf and Gg .

Remark 4. An automorphism ϕ of G does not fix, in general, the subgroups H and N
setwise. If ϕ(N) 6= N , then ϕ(Gf ) is, in general, not the graph of a mapping H → N .
That makes the definition of graph equivalence seemingly less attractive since not all
the elements in the orbit of Gf under group automorphisms are graphs of functions
H → N . We refer to [10] for a thorough discussion of graph equivalence (in that papers,
the term CCZ equivalence was used, since CCZ equivalence was first introduced in a
paper by Carlet, Charpin and Zinoviev [11].

There is another nice way to interpret graph equivalence via code equivalence. We
will introduce this concept in Section 3.

The group algebra over C (or any algebra over an algebraically closed field) can
be also described as a subalgebra of a matrix algebra: We label the rows and columns
of a matrix with the elements of G. If A =

∑
g∈G ag g ∈ C[G], then we define an

embedding ι of C[G] into C(|G|,|G|) by ι(A) = (ag,h)g,h∈G with ag,h = ag−1h. It is
easy to see and well known that ι is an injective homomorphism (actually independent
from G being abelian or not). Equation (3) becomes

(ι(GF ))2 = 2n + 2 · ι(DF ). (4)

Since the group is elementary abelian, Gf is symmetric, and (4) shows that any two
different rows of ι(Gf ) have inner product 0 or 2. We may think of this property as
the “defining” property of an APN mapping, and this property is preserved by row and
column permutations. This gives rise to another concept of “equivalence”, which we
call design equivalence:

Definition 4. Two matrices A and B in C(n,n) are called design equivalent if there
are permutation matrices P and Q such that B = P · A ·Q. If G is a group of oder n,
then we call two group algebra elements A and B design equivalent if ι(A) and ι(B)
have this property.



Remark 5. If A,B ∈ C[G] are multiplier equivalent, then ι(A) and ι(B) are design
equivalent, but not vice versa, as the following example shows:

Example 1. We define the two sets

A := {x ∈ F 6
2 : x1x2 + x3x4 + x5x6 = 1}

B := {x ∈ F 6
2 : x1x2 + x3x4 + x5x6 + x1x5x3 = 1}

Using Magma [12] it is not very difficult to see that ι(A) and ι(B) are design equiva-
lent. For this purpose, we define two designs using the matrices ι(A) and ι(B) as their
incidence matrices: You may think of a design simply as a matrix with entries 0 and 1,
where the columns correspond to points of the design, and the rows are the incidence
vectors of blocks, see [9] for background from design theory. Magma checks quickly
that the two designs corresponding to A and B are isomorphic which shows that there
are permutation matrices P andQ such that ι(B) = P ·ι(A)·Q. But the two sets are not
multiplier equivalent since the function f(x1, . . . , x6) = x1x2 + x3x4 + x5x6 which
definesA is quadratic, and the function g(x1, . . . , x6) = x1x2+x3x4+x5x6+x1x5x3

is of degree 3.
We note that the two functions f and g are bent functions, and the sets A and B are

(Hadamard) difference sets, see Definition 6.

Two subsets associated with an APN function f are the graphGf (which is basically
the function) and Df (which is a kind of derivative). In Section 3, we will investigate
Df in more detail. We note that design equivalence of the sets Gf and Gg (or graph
equivalence of f and g) implies design equivalence of Df and Dg . We state a more
general result:

Proposition 2. IfA,B ∈ C(n,n) are design equivalent, thenA∗ ·A is design equivalent
to B∗ ·B, where “ ∗” denotes “complex conjugate transpose”.

Proof. WriteB = PAQ for suitable permutation matrices P andQ. ThenQTA∗AQ =
B∗B. �

Since we may also add a multiple of the identity matrix to design equivalent matri-
ces and do not destroy equivalence in this way, we obtain the following corollary:

Corollary 1. If Gf and Gg are design equivalent for APN functions f and g, then Df

and Dg are also design equivalent, since ι(Df ) = ι(Gf )∗ι(Gf )− 2n I .

There is another concept, closely related to APN functions, called “almost bent-
ness”. It is connected with the Walsh transform, which can be easily described in terms
of group rings.

As before, let G be an abelian group of order v There are v different homomor-
phisms χ : G→ K∗, provided that K contains a v∗-th root of unity (v∗ is the exponent
of G, i.e. it is the least common multiple of the orders of the elements in G). In our
cases, this condition is trivially satisfied since K will be the field of complex numbers.

The homomorphisms are called characters. The set of characters form a group
Ĝ: If χ1 and χ2 are two characters, then χ1 · χ2 : G → K∗ is the character with



(χ1 · χ2)(g) := χ1(g) · χ2(g). The identity element in this character group is the so
called trivial character or principal character χ0 : G → K∗ with χ0(g) = 1 for all
g ∈ G. The group Ĝ is isomorphic to G.

If ψ is an automorphism of G, then the mapping χψ defined by χψ(g) := χ(ψ(g))
is a character, again.

We can extend characters (by linearity) to homomorphisms K[G] → K: We define
χ(
∑
g∈G ag · g) :=

∑
g∈G ag · χ(g). Note that these mappings are indeed homomor-

phisms, which means that they satisfy χ(A · B) = χ(A) · χ(B) and χ(A + B) =
χ(A) + χ(B). The element ∑

χ∈ bG
χ(A) · χ ∈ K[Ĝ]

is called the Fourier transform of A ∈ K[G]. The following orthogonality relations
are well known and easy to prove:

∑
g∈G

χ(g) =

{
0 if χ 6= χ0,

|G| if χ = χ0,∑
χ∈ bG

χ(g) =

{
0 if g 6= 1,

|G| if g = 1.

Moreover,

ag =
1
|G|

∑
χ∈ bG

χ(A) · χ(g−1),

where A =
∑
g∈G ag g. This last statement is called the Fourier inversion formula. In

other words: If we know all the character values χ(A) of some group algebra element
A ∈ K[G], then we know A.

The inversion formula implies what is called Parseval’s equation:∑
g∈G

a2
g =

1
|G|

∑
χ∈ bG
|χ(A)|2.

Characters in elementary abelian 2-groups F m
2 can be easily described. We take any

nondegenerate symmetric bilinear form (·|·). Then the mapping χu : F m
2 → F m

2 with
χu(v) := (−1)(u|v) is a character.

Quite often, F m
2 is realized as the additive group of Fm2 . In this case, we may take

the trace-bilinear form (u|v) := tr(u · v), where u, v ∈ Fm2 and tr is the usual trace
function tr(x) = x+ x2 + x4 + . . .+ x2m−1

.
The multiset of character values of a group algebra element is called the Walsh

spectrum. It is not invariant under equivalence since adding an element g to Gf gives
multiplication of χ(Gf ) by χ(g). The multiset of absolute values of the character val-
ues, which is called the extended Walsh spectrum, is invariant under graph equiva-
lence. If f is APN, then Equation (3) gives the following connection between the Walsh



coefficients of Df and Gf :

χ(Gf )2 − 2n

2
= χ(Df ).

Therefore, the extended Walsh spectrum of f uniquely determines the Walsh spec-
trum of Df and vice versa.

If f is linear then G 2
f = 2nGf , hence the nonzero character values have absolute

value 2n. There must be a nonzero character value χ(Gf ) for some nontrivial character
χ: Otherwise Gf would be a group algebra element with χ0(Gf ) = 2n and χ(Gf ) = 0
for all other characters. Fourier inversion shows that this is possible only if Gf = 1

2nG,
which is absurd since Gf has coefficients 0 and 1. Hence, another nonlinearity criteria
is to minimize the maximum nontrivial Walsh coefficient (in absolute value) ofGf . One
can show that there is at least one character χ with χ(Gf )2 ≥ 2n+1 (apply Parseval’s
equation to G2

f and note that all coefficients in G2
f are even).

Definition 5. A function f : F n
2 → F n

2 is almost bent (AB) if |χ(Gf )| ≤ 2(n+1)/2 for
all nontrivial characters χ.

Remark 6. If f is an AB function, then the nontrivial character values are 0 and±2(n+1)/2.
Moreover, AB functions can exist only for n odd, see [3], for instance.

From the proof that the maximum Walsh coefficient is 2(n+1)/2, the following
Proposition follows almost immediately:

Proposition 3. [13] Any AB function is APN.

Remark 7. The converse of this proposition is not true. First of all, APN functions do
exist also if n is even, where no AB functions can exist. Moreover, there are also APN
functions with n odd which are not AB, for instance the mapping x−1.

We are mainly interested in APN functions rather than AB functions. The follow-
ing Theorem is important and justifies that the concept of “design equivalence” is also
useful if one investigates the Walsh coefficients of functions:

Theorem 1. Let A and B be elements in C[G], where G is an arbitrary abelian group.
IfA andB are design equivalent, then the extended Walsh spectrum ofA andB are the
same.

Proof (Compare with the proof of Proposition 2). It is well known that the vectors
(χ(h))h∈G are eigenvectors of ι(A) with eigenvalue χ(A): Note that∑

h∈G

ag−1hχ(h) =
∑
h∈G

ahχ(gh) = χ(A) · χ(g),

hence all the elements in the matrix algebra ι(C[G]) can be diagonalized simultane-
ously, since it is an algebra of commuting matrices.

Let ι(B) = P ·ι(A)·Q for some permutation matrices P andQ. The extended Walsh
spectrum of A is the multiset of eigenvalues of A∗ · A, where A∗ =

∑
g∈G agg

−1



since χ(A∗) = χ(A), the complex conjugate of χ(A). It is not difficult to see that
ι(A∗) = ι(A)∗, where ι(A)∗ is the complex conjugate transpose matrix of ι(A). We
have ι(B)∗ · ι(B) = QT · ι(A)∗ · ι(A) · Q, hence the multisets of eigenvalues of
ι(B)∗ · ι(B) and ι(A)∗ · ι(A) coincide. �

If f is AB, then χ(Df ) = 2n−1 if χ(Gf ) = 2(n+1)/2 and χ(Df ) = −2n−1 if
χ(Gf ) = 0. Therefore, Df is a subset of F 2n

2 with |χ(Df )|2 = 22n−2 for all nontriv-
ial characters χ and χ0(Df ) = 22n−1 − 2n−1. Subsets with this property are called
Hadamard difference sets. The indicator function of a Hadamard difference set D, i.e.
the function ind(x) = 1 if x ∈ D and ind(x) = 0 otherwise, is called a bent function.
More precisely:

Definition 6. LetG be an abelian group of order 4u2. A subsetD ofG, |D| = 2u2−u,
such that the list of differences d− d′ with d, d′ ∈ D, d 6= d′, covers every nonidentity
element of G exactly u2 − u times is called a Hadamard difference set of type −.
The complement D′ of D has the property that every element is covered exactly u2 + u
times, and the order of D′ is 2u2 + u (Hadamard difference sets of type +).

Remark 8. For the general definition of difference sets and many references and exam-
ples and theoretical approaches, we refer to [9].

We summarize the discussion above in the following Proposition:

Proposition 4. [11] If f : F n
2 → F n

2 is AB, then the set Df is a Hadamard difference
set of type −.

Many examples of Hadamard difference sets are known if G is an elementary
abelian 2-group. Again, we refer to [2]. The most classical construction is the following:

Example 2. If m = 2n is even, then the set

D := {x ∈ F 2n
2 : x1x2 + x3x4 + · · ·+ x2n−1x2n = 1}

is a Hadamard difference set of type −.

It seems that only very few of the known Hadamard difference sets can be con-
structed as a set Df for some AB function f . For instance, there are, up to affine equiv-
alence, precisely 4 different Hadamard difference sets in F 6

2 (see [14, 15]), but only
one of them occurs as Df , since there is, up to affine equivalence, just one AB func-
tion f : F 3

2 → F 3
2 . The Hadamard difference set in this case is the classical quadratic

example in 2. However, for larger n, the Df ’s are other bent functions. For quadratic
functions, they all belong to the Maiorana-McFarland class, as we will see later. Here
we just mention this important class of Hadamard difference sets:

Example 3 (Maiorana-McFarland construction, see [16]). Let H1, . . . ,H2n−1 be
the 2n − 1 different hyperplanes in F n

2 . Let g1, . . . , g2n be arbitrary elements in F n
2 .

Let v1, . . . v2n−1 be different elements of F n
2 . Then the set

2n−1⋃
i=1

(vi, Hi + gi) ⊂ F n
2 × F n

2

is a Hadamard difference set of type −.

Remark 9. The Hadamard difference set in Example 2 is of Maiorana-McFarland type.



3 APN functions and their groups

If f, g : F n
2 → F n

2 are APN functions (or any functions), then we have called the two
functions graph equivalent if Gf and Gg are multiplier equivalent. The group of affine
transformations v 7→ ϕ(v) + g preserves the APN property, but, as explained in the
last Section, may map Gf to some group algebra element which is not the graph of a
function.

Let us describe several groups corresponding to a group algebra element A ∈ C[G]
in general. Then we may apply the definitions both to Gf and Df .

Definition 7. Let G be a multiplicatively written group G, and let A ∈ C[G]. The mul-
tiplier groupM(A) of A consists of all automorphisms ϕ of G such that ϕ(A) = A · g
for some g ∈ G. The automorphism group of A consists of all affine transformations
τϕ,g : x 7→ ϕ(x) · g such that τϕ,g(A) = A · h for some h ∈ G. The design auto-
morphism group Aut(A) consists of all pairs of permutation matrices (P,Q) such that
P · ι(A) ·Q = ι(A).

Remark 10. The automorphism group of A is contained in the design automorphism
group of A, hence the translations x 7→ x · g are design automorphisms.

Remark 11. The group generated by M(A) and the translations is the normalizer of
the group of all translations x 7→ x · g, g ∈ G, in the design automorphism group.

From now on, G is always an elementary abelian group F m
2 . We are going to

describe how we can determine the multiplier group of A and how we can explain
multiplier equivalence of two subsets A,B ∈ G via code equivalence. We define an
(m+ 1)× |A|-matrix Aext over F2 as follows: The columns of the matrix are the vec-
tors (1, v)T with v ∈ A. The row space of this matrix is called the code A of Aext. We
define the analogous matrix for a subset B. If A and B are equivalent, then obviously
|A| = |B|, and denote this number by a. The two codesA and B are called code equiv-
alent if there is a permutation matrix P of size a× a and an invertible matrix U of size
m+ 1×m+ 1 such that

U ·Aext = Aext · P,

see [17], for instance. Since both the row space of Aext and of Bext contain the all-
one-vector (1, . . . , 1), we may assume without loss of generality that the first row of U
is (1, 0, . . . , 0). Thus, U is of type 

1 0 · · · 0
v1 ∗ · · · ∗
...

...
. . .

...
vm ∗ · · · ∗

 ,

i.e. there is an invertible matrix W ∈ F(m,m)
2 and v ∈ F m

2 such that

U =
(

1 0
v W

)
.



This shows that there is an automorphism ϕ (defined by the matrix W ) of F m
2 and

an element v ∈ F m
2 such that ϕ(A) + v = B. We summarize this discussion in the

following Theorem:

Theorem 2. Two subsets A,B of F m
2 are multiplier equivalent (see Definition 3) if

and only if the codes defined by the rows of the extended matrices Aext and Bext are
isomorphic.

Given a permutation matrixP , the corresponding matrixU is, in general, not unique.
However, if the rank of Aext is m+ 1, then U and hence W is uniquely determined by
P . This shows the following:

Corollary 2. Let A be a subset of F m
2 , such that m + 1 is the F2-rank of Aext. Then

the automorphism group of the code A is isomorphic to the automorphism group of A.

The condition in Corollary 2 is satisfied for the sets Gf and Df corresponding to
APN functions f : F n

2 → F n
2 , n > 2:

Proposition 5. Let f : F n
2 → F n

2 be an APN function, n > 2. Then the F2-rank of the
matrices Dext

f and Gext
f is 2n+ 1.

Proof. It is shown in [18], for instance, that the rank of Gext
f is 2n+ 1. In other words,

there is no vector v ∈ F 2n
2 such that (v|w) = 1 for all w ∈ Gf or (v|w) = 0 for all

w ∈ Gf . The matrix Df has the vectors w + w′, w,w′ ∈ Gf , w 6= w′, as columns.
If the rank of Dext

f were smaller than 2n + 1, there would be a vector v with (v|w) +
(v|w′) = 1 or = 0 for all w,w′ ∈ Gf , w 6= w′. Obviously, it is impossible that
(v|w) + (v|w′) = 1 for all w,w′: We choose three different elements w1, w2 and w3 in
Gf . Then (v|w1) + (v|w2) = 1 and (v|w2) + (v|w3) = 1, hence (v|w1) + (v|w3) = 0.
If (v|w) + (v|w′) = 0 for all w,w′, we had (v|w) = (v|w′) for all w,w′ ∈ Gf , which
contradicts rank(Gext

f ) = 2n+ 1, as indicated at the beginning of this proof. �

Since it is rather easy (using Magma) to determine the automorphism groups of
“small” codes (we can handle the codes associated with Df up to n = 8), Magma
provides us with a powerful tool to determine the automorphism and the multiplier
groups of both sets Gf and Df associated with APN functions. It seems to be harder to
determine the design automorphism groups, see also [8].

4 Computational results

It seems to be quite difficult to determine invariants like the automorphism groups of
the sets Df and Gf theoretically. Therefore, we do not include a table of all known
infinite families of APN functions here, since we cannot prove any theoretical results
about these series. We refer to [3] for the known families. Here we just mention that by
now many infinite families of so called quadratic APN functions are known: We call f
quadratic if the functions x 7→ f(x+ a) + f(x) + f(a) + f(0) are linear.

Many APN’s for small values of n (n ≤ 12) are constructed by computer, which
are not yet members of infinite families of APN functions. With the exception of one



example in [1], all recently constructed functions are graph equivalent to a quadratic
function.

Besides the many quadratic examples, we think that the classical Kasami family is
one of the most interesting series:

Proposition 6 ([19, 20], see also [21]). Let f : F n
2 → F n

2 be the power mapping xd,
where d = 2i + 1 or d = 22i − 2i + 1. If gcd(i, n) = 1 (if n is odd) or n/ gcd(i, n) is
odd (if n is even), then f is APN. The cases d = 2i + 1 are called the Gold cases, the
cases d = 22i − 2i + 1 the Kasami cases.

Remark 12. The Gold power mappings are quadratic.

In the next tables, we determine the orders of the multiplier groups of the sets Df ,
where f is one of the APN functions in [1] with n ≤ 8.

Another question is whether the sets Df or Gf are equivalent. It turns out that in
all known examples with n ≤ 9 so far, the sets Df are not design equivalent if the
functions are not graph equivalent. This implies, in view of Corollary 1, that also the
Gf are not design equivalent for functions which are not graph equivalent. So we think
that one should try to find criteria to distinguish the “designs” corresponding to Gf and
Df theoretically. The situation with the sets Df is similar: The sets Df are “weaker”,
i.e. when you compute Df from Gf , you “loose” information about f . There seems to
be no reason that a set A can occur as the set Df for just one APN function f , but for
the small examples in our tables, that is the situation.

Let us summarize this observation in the following proposition:

Proposition 7. The setsDf and therefore also the setsGf are pairwise design inequiv-
alent for the different APN functions listed in [1].

Proof. The proof relies on computations done with Magma. We have checked some
invariants which are easy to compute (Walsh spectrum, F2-ranks, full (design) auto-
morphism groups). However, this is not sufficient to distinguish all the sets Df . In this
case, we computed the so called triple intersection numbers: We may think of Df as a
0−1 matrix ι(Df ). Given three different rows of ι(Df ), we call the number of columns
where all rows have entry 1 a triple intersection number.

The spectrum, i.e. the multiset of all these triple intersection numbers, is an in-
variant under design isomorphism. We used these numbers in order to distinguish the
isomorphism type of the sets which could not be distinguished otherwise. �

We think that it should be possible to determine some of the invariants which we
discussed here (triple intersection numbers, automorphism groups) as well as some of
the invariants discussed elsewhere (in particular the F2-ranks of the incidence matrices
ι(Df ) and ι(Gf )) theoretically, in particular, if the functions f are quadratic. If f is
quadratic, then the functions x 7→ f(x+ a)− f(x) are (affinely) linear for all a ∈ F n

2 .
Hence the sets

Ha := {f(x+ a)− f(x) : x ∈ F n
2 }

are (affine) hyperplanes of codimension 1. The sets Df are (for quadratic f )

Df =
⋃

a∈F n
2 ,a6=0

(a,Ha).



If f is AB, these are precisely Maiorana-McFarland Hadamard difference sets.
APN functions f for which the sets Ha are always affine hyperplanes are called

crooked, see [22]. There is an interesting conjecture about crooked functions, see [23,
24] for partial results towards this conjecture.

Conjecture 1. A crooked functions must be quadratic.

As mentioned above, we know no example of a set Df such that there exists a
function g which is graph or design inequivalent to f and which satisfies Dg = Df .

Question 1. Do the sets Df determine f up to graph or design equivalence?

We note that the first author of this paper describes an interesting way how to re-
construct f from Df if f is quadratic (under some additional assumption) [25].

Finally, we know of no example of an APN function f such that the “classical”
example of a Hadamard difference set (Example 2) occurs as the set Df (if n > 3).

Conjecture 2. Show that none of the bent functions Df which occur from APN func-
tions f : F n

2 → F n
2 are quadratic (Example 2).

4.1 Tables of APN functions, n ≤ 8

In Tables 5–7, we recall the list of APN functions constructed via “switching” in [1].
For the convenience of the reader, we use the same numbering as in [1], which is related
to the switching process that has been used to construct the examples. We emphasize
that this list of APN functions is complete only if n = 5 (see [26]): For n ≥ 6, many
more APN functions may exist. For n ≤ 4, only one APN function exists (up to graph
equivalence), which is x3. The examples listed here are graph inequivalent, and the sets
Gf are pairwise design inequivalent. This follows from [1].

In the tables, u always denotes a primitive element in the respective field.

Table 3. Used primitive polynomials p(x)

n p(x)

5 x5 + x2 + 1
6 x6 + x4 + x3 + x + 1
7 x7 + x + 1
8 x8 + x4 + x3 + x2 + 1

4.2 Tables of orders of multiplier groups

In Tables 9–11, we determine the multiplier groups and automorphism groups of Gf
andDf . This extends the tables in [1], where we did not determine the multiplier groups
of Df .

Moreover, we point out that in [1] there is a misprint in Table 10. The order of the
groupM(Gf ) for n = 8, for the function f No. 1.2 is incorrect. The correct value is
contained in Table 11.



Table 4. All graph equivalence classes of APN’s in F 5
2

n = 5

No. F (x)

1.1 x3

1.2 x5

2.1 x−1

Table 5. Known graph equivalence classes of APN’s in F 6
2

n = 6

No. F (x)

1.1 x3

1.2 x3 + u11x6 + ux9

2.1 x3 + ux24 + x10

2.2 (No. 2.1) +u3(tr(u10x3 + u53x5) + tr8/2(u
36x9))

2.3 (No. 2.1) +tr(u34x3 + u48x5) + tr8/2(u
9x9)

2.4 (No. 2.1) +u2(tr(u24x3 + u28x5) + tr8/2(x
9))

2.5 (No. 2.3) +u42(tr(u10x3 + u51x5) + tr8/2(u
9x9))

2.6 (No. 2.3) +u23(tr(u31x3 + u49x5) + tr8/2(u
9x9))

2.7 (No. 2.3) +u12(tr(u42x3 + u13x5) + tr8/2(u
54x9))

2.8 (No. 2.3) +u(tr(u51x3 + u60x5) + tr8/2(u
18x9))

2.9 (No. 2.3) +u14(tr(u18x3 + u61x5) + tr8/2(u
18x9))

2.10 (No. 2.3) +u17(tr(u50x3 + u56x5))
2.11 (No. 2.3) +u19(tr(u11x3 + u7x5 + u38x7 + u61x11 + u23x13) + tr8/2(u

54x9) + tr4/2(u
42x21))

2.12 (No. 2.4) +u(tr(u54x3 + u47x5) + tr8/2(u
9x9))



Table 6. Known graph equivalence classes of APN’s in F 7
2

n = 7

No. F (x)

1.1 x3

1.2 x3 + tr(x9)
2.1 x34 + x18 + x5

2.2 x3 + x17 + x33 + x34

3.1 x5

4.1 x9

5.1 x13

6.1 x57

7.1 x−1

8.1 x65 + x10 + x3

9.1 x3 + x9 + x18 + x66

10.1 x3 + x12 + x17 + x33

10.2 x3 + x17 + x20 + x34 + x66

11.1 x3 + x20 + x34 + x66

12.1 x3 + x12 + x40 + x72

13.1 x3 + x5 + x10 + x33 + x34

14.1 x3 + x6 + x34 + x40 + x72

14.2 1 x3 + x5 + x6 + x12 + x33 + x34

14.3 (No. 14.1) +u27(tr(u20x3 + u94x5 + u66x9))

5 Some recent new results on APN functions

In this paper we have discussed the problem how to determine the isomorphism class
of an APN function using the set Df . We think that finding good invariants for the
equivalence classes of designs is a challenging problem.

In this section, we would like to mention three very interesting recent results on
APN functions which are not quite related to the topic of this paper, but which deserves
to be mentioned.

5.1 Nonquadratic APN functions

We have noted that the many new examples of APN functions which have been con-
structed in the last few years are all graph equivalent to quadratic functions. There is
only one exception: A single example of a new nonquadratic APN function F 6

2 → F 6
2

has been constructed in [1]. This function (Case 2.11 in our table 5) is also inequivalent
to a power mapping. It is the only nonquadratic example on F 6

2 which is known. It is
not yet a member of an infinite family. The construction uses a “switching” of known
quadratic APN functions (switching means “changing one coordinate function”, see [1].

5.2 APN permutations

Until recently, no APN permutation on F n
2 with n even was known, and it was con-

jectured that none can exist. This conjecture was shattered recently by John F. Dillon



Table 7. Known graph equivalence classes of APN’s in F 8
2

n = 8

No. F (x)

1.1 x3

1.2 x3 + tr(x9)
1.3 (No. 1.1) +u(tr(u63x3 + u252x9))
1.4 (No. 1.2) +u38(tr(u84x3 + u213x9))
1.5 (No. 1.2) +u51(tr(u253x3 + u102x9))
1.6 (No. 1.3) +u154(tr(u68x3 + u235x9))
1.7 (No. 1.4) +u69(tr(u147x3 + u20x9))
1.8 (No. 1.5) +u68(tr(u153x3 + u51x9))
1.9 (No. 1.6) +u35(tr(u216x3 + u116x9))
1.10 (No. 1.7) +u22(tr(u232x3 + u195x9))
1.11 (No. 1.8) +u85(tr(u243x3 + u170x9)) (∼ x9 + tr(x3))
1.12 (No. 1.9) +u103(tr(u172x3 + u31x9))
1.13 (No. 1.10) +u90(tr(u87x3 + u141x5 + u20x9) + tr16/2(u

51x17 + u102x34))
1.14 (No. 1.11) +u5(tr(u160x3 + u250x9))
1.15 x9

1.16 (No. 1.14) +u64(tr(u133x3 + u30x9))
1.17 (No. 1.16) +u78(tr(u235x3 + u146x9))
2.1 x3 + x17 + u16(x18 + x33) + u15x48

3.1 x3 + u24x6 + u182x132 + u67x192

4.1 x3 + x6 + x68 + x80 + x132 + x160

5.1 x3 + x5 + x18 + x40 + x66

6.1 x3 + x12 + x40 + x66 + x130

7.1 x57

Table 8. Orders of the groups of the sets Gf and Df for n = 5

No. |M(GF )| |Aut(Gf )|
22n|M(Gf )|

|M(Df )|
|M(Gf )|

|Aut(Df )|
22n|M(Df )|

1.1 25 · 5 · 31 1 1 1
1.2 25 · 5 · 31 1 32 1
2.1 2 · 5 · 31 1 1 1



Table 9. Orders of the groups of the sets Gf and Df for n = 6

No. |M(GF )| |Aut(Gf )|
22n|M(Gf )|

|M(Df )|
|M(Gf )|

|Aut(Df )|
22n|M(Df )|

1.1 26 · 6 · 63 1 1 2
1.2 26 · 63 1 1 2
2.1 27 · 7 1 1 1
2.2 26 1 1 1
2.3 26 1 1 1
2.4 26 1 1 1
2.5 26 · 5 1 1 1
2.6 26 · 5 1 1 1
2.7 26 1 1 1
2.8 26 1 1 1
2.9 26 1 1 1
2.10 26 1 1 1
2.11 23 1 1 1
2.12 26 · 7 1 2 1

Table 10. Orders of the groups of the sets Gf and Df for n = 7

No. |M(GF )| |Aut(Gf )|
22n|M(Gf )|

|M(Df )|
|M(Gf )|

|Aut(Df )|
22n|M(Df )|

1.1 27 · 7 · 127 1 1 1
1.2 27 · 7 1 1 1
2.1 27 · 7 1 1 1
2.2 27 · 7 1 1 1
3.1 27 · 7 · 127 1 1 1
4.1 27 · 7 · 127 1 27 1
5.1 7 · 127 1 1 1
6.1 7 · 127 1 1 1
7.1 2 · 7 · 127 1 1 1
8.1 27 · 7 1 1 1
9.1 27 · 7 1 1 1
10.1 27 · 7 1 1 1
10.2 27 · 7 1 1 1
11.1 27 · 7 1 1 1
12.1 27 · 7 1 1 1
13.1 27 · 7 1 1 1
14.1 27 · 7 1 1 1
14.2 27 · 7 1 1 1
14.3 27 1 1 1



Table 11. Orders of the groups of the sets Gf and Df for n = 8

No. |M(GF )| |M(Df )|
|M(Gf )|

1.1 211 · 255 1
1.2 211 · 3 1
1.3 210 · 3 1
1.4 28 · 3 1
1.5 210 · 3 1
1.6 210 · 3 1
1.7 29 · 3 1
1.8 210 · 3 1
1.9 210 · 3 1
1.10 29 · 3 1
1.11 211 · 3 1
1.12 210 · 3 1
1.13 29 1
1.14 28 · 3 1
1.15 211 · 255 16
1.16 29 · 3 1
1.17 29 · 3 1
2.1 210 · 9 · 5 1
3.1 210 · 3 1
4.1 211 1
5.1 211 1
6.1 211 1
7.1 23 · 255 1



and Adam Wolfe [27]. They constructed an APN permutation on F 6
2 . The function is

graph equivalent to Example 2.1 in Table 5, and it is so far the only one! There is a nice
coding theoretic interpretation for the existence of bijective APN functions, see [27].
Using this interpretation, Dillon was able to show that for small n, none of the other
known APN functions is equivalent to a permutation. This has been also confirmed by
the first author of this paper: He checked that none of the APN functions in [1] is graph
equivalent to a permutation, except the Dillon permutation.

It is now a challenging problem to find more APN permutations or to prove that no
other example may exist.

5.3 Exceptional Exponents

There are several power mappings xd which are APN functions. The Gold and the
Kasami exponents (see example 6) are APN functions for infinitely many fields F n

2 .
An exponent d with the property that there are infinitely many fields where xd is APN
has been called an exceptional exponent. It has been conjectured (see [28]) that the
Gold and Kasami exponents are the only exceptional exponents. This conjecture has
now been proven: A major step towards a proof is contained in [29], and the missing
cases are treated in [30].

6 Conclusions

We have determined the automorphism groups of the setsDf where f is one of the APN
function on F n

2 , n ≤ 8, described in [1]. Surprisingly, all the sets Df are inequivalent.
If n is odd and f is almost bent, the sets Df are Hadamard difference sets (or,

equivalently, bent functions). None of these difference sets is equivalent to the classical
quadratic Hadamard difference sets.

The results of this paper indicate that the sets Df are apparently good “distinguish-
ers” for APN functions. In the quadratic case, they are quite easy to describe and there-
fore they can be used (hopefully) for theoretical (computer free) proofs for the inequiv-
alence of quadratic APN functions.

Most of the ideas in this paper can be also used to investigate arbitrary Hadamard
difference sets or related objects (like partial difference sets) in elementary abelian
groups.
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