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Abstract

We present a new construction for sequences in the finite abelian
group Cr

n without zero-sum subsequences of length n, for odd n. This
construction improves the maximal known cardinality of such sequences
for r > 4 and leads to simpler examples for r > 2. Moreover we ex-
plore a link to ternary affine caps and prove that the size of the second
largest complete caps in AG(5, 3) is 42.
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1 Introduction and Main Results

Let G be a finite abelian group, written additively. If |G| > 1, then there
are uniquely determined integers r, n1, . . . , nr with 1 < n1 | . . . | nr such
that G ∼= Cn1 ⊕ . . .⊕Cnr . Then r = r(G) is the rank of G, and nr = exp(G)
is the exponent of G.

We denote by F(G) the free (multiplicative) monoid with basis G.
An element S ∈ F(G) is called a sequence over G, written as

S =
∏
g∈G

gvg(S) ∈ F(G) ,

where vg(S) is called the multiplicity of g in S.
A sequence S′ ∈ F(G) is called a subsequence of S if vg(S′) ≤ vg(S) for

every g ∈ G. Equivalently S′ | S. The product of two sequences R and S
is RS :=

∏
g∈G gvg(R)+vg(S).
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σ(S) =
∑
g∈G

vg(S)g ∈ G denotes the sum of S.

|S| =
∑
g∈G

vg(S) ∈ N0 denotes the length of S.

We say that the sequence S is a zero-sum sequence if σ(S) = 0 and call
a sequence square free if vg(S) ≤ 1 for all g ∈ G.

While problems in this area of additive number theory are usually stated
in terms of sequences these equivalently can be viewed as multisets of group
elements. The multiplication of sequences then translates to the union of
multisets.

If we choose G as the homocyclic group G = Cr
n, Cn being the cyclic

group of order n, then viewing the sequences as codes or, for prime n, as
multisets of points in the affine space AG(r, n) can be fruitful as we will see
in Section 4.

Some central invariants in zero-sum theory are

• s(G) the smallest integer l ∈ N such that every sequence S of length l
over G has a zero-sum subsequence T of length |T | = n,

• η(G) the smallest integer l ∈ N such that every sequence S of length
l over G has a zero-sum subsequence T of length |T | ∈ [1, n],

• g(G) the smallest integer l ∈ N such that every square free sequence
S of length l over G has a zero-sum subsequence T of length |T | = n.

For finite abelian groups of rank at most two, the invariants η(G) and
s(G) are completely determined.

Theorem A. Let G = Cn1 ⊕ Cn2 with 1 ≤ n1 | n2. Then

η(G) = 2n1 + n2 − 2 and s(G) = 2n1 + 2n2 − 3 .

A proof of Theorem A was recently given in [12, Theorem 5.8.2]. It
is based on a result by C. Reiher which states that s(Cp ⊕ Cp) = 4p − 3
for all prime p (see [18]). Note that Theorem A contains the Theorem of
Erdös-Ginzburg-Ziv as the special case n1 = 1.

Apart from this result only some sporadic exact results are known. These
results mostly are for homocyclic groups G = Cr

n. From now on we only
consider the case G = Cr

n, of rank r larger than two, and we start with the
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discussion of lower bounds. We only formulate bounds for s(Cr
n). Bounds

for η(Cr
n) and g(Cr

n) follow from Lemma 4.

Theorem B. Let n ∈ N≥2 and r ∈ N.

1. The sequence S over Cr
n of all different 0-1 tuples has the property that

Sn−1 has no zero-sum subsequence of length n. In particular, we have
s(Cr

n) ≥ 2r(n− 1) + 1.

2. If n is odd, then there exists a sequence S over C3
n of length |S| = 9

such that Sn−1 has no zero-sum subsequence of length n. In particular,
we have s(C3

n) ≥ 9(n− 1) + 1.

3. If n is odd, then there exists a sequence S over C4
nof length |S| = 20

such that Sn−1 has no zero-sum subsequence of length n. In particular,
we have s(C4

n) ≥ 20(n− 1) + 1.

The first result is due to H. Harborth (see [13, Hilfssatz 1] or Proposition
10). The bound is known to be sharp if n is a power of two. The second result
is due to C. Elsholtz [8], the third can be found in [7]. For larger r the best
known bounds were obtained from these by a simple product construction,
see Lemma 6. E.g. for odd n it was known that s(C5

n) ≥ 40(n − 1) + 1,
s(C6

n) ≥ 81(n− 1) + 1, s(C7
n) ≥ 180(n− 1) + 1, . . . .

In [11] W. Gao and R. Thangadurai conjecture that the lower bounds
given in Theorem B.2 are the precise values, that is

η(C3
n) = 8(n− 1) + 1 and s(C3

n) = 9(n− 1) + 1 for all odd n ∈ N≥3

In [10, Theorem 1.7] the conjecture has been confirmed for n = 3a5b. The-
orem 1.8 of the same paper states s(C3

n) = η(C3
n) + n− 1 = 8(n− 1) + 1 for

n = 2a3.
For an overview on the history of zero-sum sequences, further relations

and references see [12, Section 5.7] and the recent survey [7]. We restrict
ourself here to introduce what is necessary to understand the presented re-
sults.

The constructions of Theorem B can be seen as the construction of a
sequence S in Zr (r=2,3,4), such that Sn−1 modulo n has the desired prop-
erties. It is clear that the result of Harborth can not be improved using an
alphabet with only two entries, i.e. using sequences over {a, b}r ⊂ Zr. The
constructions mentioned in Theorem B.2 and B.3 are based on sequences
over {0, 1, 2, 3}r ⊂ Zr.

The recursive construction presented in Section 3 of the present paper
is based on sequences over {0, 1, 2}r ⊂ Zr. For odd n we obtain sequences
with the best known lengths for r = 3, 4 and for larger r we improve the
lower bounds on s(Cr

n). The following will be shown:
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Theorem 1. For every odd natural number n ≥ 3 there exist sequences

S ∈ F(C5
n), |S| = 42, S ∈ F(C6

n), |S| = 96, S ∈ F(C7
n), |S| = 196.

such that Sn−1 has no zero-sum subsequence of length n. In particular, we
have

s(C5
n) ≥ 42(n− 1) + 1, s(C6

n) ≥ 96(n− 1) + 1, s(C7
n) ≥ 196(n− 1) + 1.

For other values of r, improvements on the bound on s(Cr
n) can be

achieved by applying the product construction, Lemma 6, with sequences of
Theorem B and Theorem 1.

An s-cap in the affine space AG(r, q) of dimension r over the finite field
of order q is a set of s points, no three of which are collinear. A sequence S
over Cr

3 without a zero-sum subsequence T of length |T | = 3 is equivalent
to a cap in AG(r, 3) (see Lemma 20).

This creates a link from zero-sum theory to the highly developed theory
of affine caps. It has some interesting consequences. The length of sequences
of the above type, e.g. sequences S in Zr , such that Sn−1 modulo n has no
zero-sum subsequence of length n for all odd n, is bounded by the maximal
size of a cap in AG(r, 3). We reach this upper bound for r = 1, 2, 3, 4.

For AG(5, 3) it is known that the largest cap has size 45 [6]. The 42-cap
obtained from the sequence here is complete, i.e. there are no points in
AG(5, 3) that can be added to this cap , so that the extension is still a cap.
In Section 4 we will prove

Theorem 2. The size of the second largest complete caps in AG(5, 3) is 42.

Hence if it is possible to find larger sequences over C5
n for all odd n, the

restriction mod 3 will be contained in the uniquely determined 45-cap.
Also for larger r we note that better ternary affine caps are known (see

e.g. [2, 7, 15]). On the other hand, again, the caps resulting from the
sequences for r = 6, 7 are complete in AG(r, 3). So longer sequences can
not be obtained by adding more elements to these sequences. This leaves
us with the interesting question if longer sequences, for all odd n, can be
found. Another open problem is to prove or disprove the statement that
the extremal size of such sequences is already completely determined by the
maximal size of an affine ternary cap, as it is the case for r ≤ 4.

2 Notation and Basic Tools

In all constructed sequences, without zero-sum subsequence over G = Cr
n,

every element will appear with frequency n−1. This motivates the following
definition:
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Definition 3. We say a sequence S ∈ F(G) has Property D′, if

• S has no zero-sum subsequence of length n = exp(G) and

• S can be written in the form S = Rn−1.

Denote by m(G) the largest integer l ∈ N such that there exists a sequence
S = Rn−1, |R| = l, with Property D′.

Lemma 4 establishes lower bounds on η(G) and g(G).

Lemma 4. Let G be a finite abelian group with exp(G) = n ≥ 2.

1. s(G) ≥ m(G)(n− 1) + 1.

2. Let S ∈ F(G) be a sequence which has no zero-sum subsequence of
length n and suppose that max{vg(S) | g ∈ G} = n− 1. Then η(G) ≥
|S| −n + 1. In particular, if |S| = s(G)− 1, then η(G) = s(G)−n + 1.

3. Let S ∈ F(G) be a sequence which has no zero-sum subsequence of
length n. Let H be a group with |H| ≥ exp(G)− 1 and f : {1, . . . , n−
1} 7→ H be an injective mapping. Then

∏
g∈G

vg(S)∏
i=1

(f(i), g) ∈ F(H ⊕G)

is a square free sequence which has no zero-sum subsequence of length
n. In particular g(Cr+1

n ) ≥ s(Cr
n).

Proof. 1.: is a direct consequence of Definition 3. For 2. and 3. see [7,
Lemma 2.3].

Definition 5. For groups G, H and sequences S ∈ F(G), R ∈ F(H) we
define the sequence S ⊕R ∈ F(G⊕H) as

S ⊕R =
∏
g∈G

∏
h∈H

(g, h)vg(S)vh(R)

With this notation we can state the well known product construction
(see. e.g. [7, Proposition 4.1]) as

Lemma 6 (The Product Construction). For G, H with n = exp(G) =
exp(H) and sequences S ∈ F(G) without a zero-sum subsequence of length
n and S′ = R′n−1 ∈ F(H) with Property D′ the sequence

P = S ⊕R′ ∈ F(G⊕H)

has no zero-sum subsequence of length n.

If also S has Property D′, then the sequence P has Property D′.
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Corollary 7. For G, H with exp(G) = exp(H) we have
s(G⊕H)− 1 ≥ (s(G)− 1)m(H) and m(G⊕H) ≥ m(G)m(H).

A slightly more general product construction will be useful later. It is
proved just with the same argument as the ordinary Product Construction.

Lemma 8 (A More General Product Construction). Let G, H be groups
with n = exp(G) = exp(H) and Si ∈ F(G), 1 ≤ i ≤ l, be sequences without
a zero-sum subsequence of length n. Moreover let S′ = R′n−1 ∈ F(H) be
a sequence with Property D′. For some partition R′

i of R′ in l subsequences
the sequence

P =
l∏

i=1

(Si ⊕R′
i) ∈ F(G⊕H)

has no zero-sum subsequence of length n.

If also the Si, 1 ≤ i ≤ l have Property D′, then P has Property D′.

Lemma 6 is a special case of Lemma 8 when Si = S for all i.

Definition 9. Let R be a sequence in Zr, and n ∈ N. Denote by Rn the
sequence in F(Cr

n) = F((Z/(nZ))r) obtained from R by componentwise re-
duction (mod n).

For a fixed representation of Zr as Z ⊕ . . . ⊕ Z define for an element
g = (g1, . . . , gr) ∈ Zr the weight of g as wt(g) =

∑r
i=1 gi ∈ Z.

In some of the following arguments we jump between the global object,
a sequence S over Zr and the corresponding local object, the sequence Sn.
The level and especially the arithmetic that has to be used will sometimes
only be indicated by the absence or presence of the subscript n.

3 The Construction

As already announced we want to construct sequence S over {0, 1, 2}r ⊂ Zr,
such that for all odd n, Sn−1

n has no zero-sum subsequence of length n, hence
has Property D′ .

3.1 Preparatory Section

Here we collect some notation, properties and arguments for future use.
Some are quite trivial.

Proposition 10 (a la Harborth). Let R be a square free sequence of {0, a}r.
If (a, n) = 1 then Rn−1

n has property D′.

Proof. Let T be a subsequence of length n, such that Tn is a zero sum
subsequence. So only 0 or an are possible values in a coordinate of σ(T ) (as
(a, n) = 1). Hence all n elements of T are identical, contradiction.
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Lemma 11. Let R be a sequence over {0, 1, 2} ⊂ Z. The only possible zero
sum subsequences, Tn, of length n of Rn, n ≥ 3 ∈ N odd, are:

1.) 0n 2.) 2n 3.) 0a2a1n−2a, 0 ≤ a < n/2

Proof. Let T be a subsequence of length n, such that Tn is a zero sum
subsequence. So the only possible values for σ(T ) are 0, n or 2n. Sum 0
is only possible if all summands are zero. Sum 2n occurs iff all summands
are 2. Sum n: as n is odd, there have to be an odd number of 1 in the
sum. If we have n = a · 2 + b · 1, so b = n − 2a. The number of zeros is
n− a− b = n− a− (n− 2a) = a.

The crucial argument in the construction (Theorem 16) will be that
a zero sum subsequence would lead to a contradiction modulo two. The
following definition and lemma will be the essence of this argument.

Definition 12 (Property P1). Let R be a sequence in Zr. We say a zero
sum subsequence, Tn, of Rn−1

n of length n, for odd n, has property P1 (with
respect to n), if we have that wt(σ(T )) ≡ r (mod 2), where r is the rank of
Zr.

We say that the sequence Rn has property P1 if every zero sum subse-
quence, Tn, of length n of Rn−1

n has property P1.

Lemma 13. Let R be a sequence in Zr, with wt(g) ≡ 1 + r (mod 2) for all
g ∈ R. Then, for every n ≥ 3 ∈ N odd, no zero sum subsequence, of length
n, of Rn−1

n has property P1.

Proof. Let Tn be a zero sum subsequence, of length n, of Rn−1
n . As n = |T |

is odd, we have that wt(σ(T )) ≡ 1 + r (mod 2).
If T has property P1 then wt(σ(T )) ≡ r (mod 2), contradiction.

The construction (Theorem 16) will need as input pairs of sequences
with certain properties we define now. Moreover the following lemma helps
to construct such pairs of sequences.

Definition 14 (Property P2 and P3). A pair of sequences (A,B), both over
Zr, is said to have property P2 (with respect to n), if for n ≥ 3 ∈ N odd we
have

• the sequence (AB)n has property P1.

• An−1
n as well as Bn−1

n have property D′

A pair (A,B) with property P2 is said to have property P3 if

• wt(a) ≡ r (mod 2) for all a ∈ A

• wt(b) ≡ r + 1 (mod 2) for all b ∈ B
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Lemma 15. If the pair of sequences (A,B), both over Zr, has property P3
than there exists a pair of sequences (Ā, B̄) over Zr+1 which has property
P3 with |Ā| = |B̄| = |A|+ |B|.

Proof. If the pair (A,B), over Zr, has property P3, choose Ā = (A⊕1)(B⊕0)
over Zr+1 and B̄ = (A⊕2)(B⊕1) over Zr+1. We claim (Ā, B̄) has property
P3.

Observe that for odd n the sequences (0 · 1)n−1
n , (2 · 1)n−1

n and (0 · 2)n−1
n

have property D′. Property D′ of the sequences Ā respectively B̄ holds due
to the product construction, Lemma 8.

We want to prove that (ĀB̄)n has property P1. Assume there is a zero-
sum subsequence Tn in (ĀB̄)n−1

n not having property P1, e.g. the weight of
σ(T ) ≡ r (mod 2).

As (AB)n has property P1 the sum of the projection to the first r coor-
dinates of Tn has weight ≡ r (mod 2). So we would have to have an even
number of ones in the newly added coordinate r + 1. Lemma 11 yields that
Tn is a subsequence of either (B ⊕ 0)n−1

n or (A⊕ 2)n−1
n but these sequences

contain no zero-sum subsequence of length n, contradiction.
The factors have been composed such that the weight condition, wt(Ā) ≡

r + 1 (mod 2) and wt(B̄) ≡ r (mod 2), are fulfilled.

3.2 The Construction

If we have pairs of sequences which have property P3 it is very easy to
construct sequences with property D′.

Theorem 16. Let the pairs (A,B) over Zr and (C,D) over Zs have property
P3. Let S be

S = (A⊕D)(B ⊕ C) over Zr+s

Then Sn−1
n , n ≥ 3 ∈ N odd, has property D′. Hence

m(Cr+s
n ) ≥ |S| = |A||D|+ |B||C|.

Proof. All elements of S have weight ≡ r + 1 (mod 2) by construction. By
Lemma 13 no zero sum subsequence, of length n, of (Sn)n−1 has property
P1.

On the other hand, An and Bn are disjoint (the elements have different
weight modulo 2). Hence if there is a zero-sum subsequence whose projection
to the first component consists of one element with multiplicity n, the zero-
sum subsequence is a subsequence either of (A⊕D)n−1

n or (B⊕C)n−1
n , both

have property D′ by Lemma 6, contradiction. By symmetry we also have
that in the projection of the zero-sum subsequence to the second component
every element has multiplicity less than n. With this information, as both
(AB)n and (CD)n have property P1, we see that Sn has property P1.

If Sn−1
n would have a zero sum subsequence of length n, this would be a

contradiction.
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The harder part, of course, is to construct good pairs of sequences which
have property P3. Now we will give a direct construction for pairs with
property P3. We will use it only for r = 3. But as the proof does not get
simpler for this special case, we prove it in general.

Definition 17 (A,B). Fix an even integer 0 < m ≤ r Define A(r) over
{0, 1, 2}r ⊂ Zr as the sequence of all points with m zeros and r − m ones
together with all points with m twos and r −m ones. Hence |A(r)| = 2

(
r
m

)
.

As we usually want |A(r)| as large as possible, we choose m as close to r/2
as possible.

Define B(r) over {0, 1, 2}r ⊂ Zr as the product over all odd s ≤ r of: the
sequences of all points with s zeros and r − s ones together with all points
with s twos and r − s ones. Hence |B(r)| = 2r.

Lemma 18. The pair (A(r),B(r)) has property P3 for all odd n ≥ 3 ∈ N.

Proof. The weight conditions are fulfilled.

We see that A(r) and B(r) admit the following symmetries:
(1) the permutation of the entry 0 and 2,
(2) an arbitrary permutation of the coordinates.

B(r)n−1
n has property D′: Assume there is a zero sum subsequence Tn.

As every element of B(r) has weight ≡ 1 + r (mod 2) and n is odd we have
that wt(σ(T )) ≡ 1 + r (mod 2), hence not all coordinates can sum up to
n. So there has to be one coordinate that sums up to 0 or 2n. Due to the
symmetries we can assume the sum is zero in this coordinate. By definition
the participating points are in {0, 1}r and different. Proposition 10 yields a
contradiction.

A(r)n−1
n has property D′: if there is a coordinate that sums up to 0 or

2n we get a contradiction by the same argument. So we can assume that all
coordinates of the zero sum subsequence sum up to n.

Let A0(r) consist of the elements of A(r) containing an entry 0 and
A2(r) of those containing an entry 2. Analogous notation is used for B(r).

Let Tn be a zero sum subsequence of length n in A(r)n−1
n . As n is odd

and by symmetry it can be assumed that T has an odd number of elements
in A0(r). The total number of entries 0, taken over all coordinates, is an
odd number times m and the total number of entries 2 is an even number
times m. In particular those numbers are different, contradicting Lemma 11.

It remains to prove property P1: Let Tn be a zero sum subsequence of
length n in (A(r)B(r))n−1

n . We will prove that every coordinate of σ(T )
equals n. Clearly this implies Property P1.
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So, by symmetry, assume that the first coordinate of σ(T ) equals 0. We
then have that the zero sum subsequence is in (A0(r)B0(r))n−1

n , contradict-
ing Proposition 10.

Lemma 19. The following pairs of sequences (A(r), B(r)) over Zr have
property P3 for all odd n ≥ 3 ∈ N:

A(1) = 1, B(1) = 0 · 2 over Z

A(2) =
(

0
0

)
·
(

1
1

)
·
(

2
0

)
, B(2) =

(
0
1

)
·
(

1
2

)
·
(

2
1

)
over Z2

Moreover there are pairs
A(3), B(3) over Z3 with |A(3)| = 6 and |B(3)| = 8,
A(4), B(4) over Z4 with |A(4)| = 14 and |B(4)| = 14.

Proof. For r = 1 the verification is trivial, for r = 2 apply Lemma 15. In
case r = 3 this follows of Lemma 18, case r = 4 is implied by Lemma 15.

Applying Theorem 16 with the pairs (A(i), B(i)), (A(j), B(j)) having
property P3 given in Lemma 19 gives us the desired sequences for all odd
n. We obtain sequences which reproduce the largest known sequences for
r = 2, 3, 4. Consequently we have

m(C2
n) ≥ 4, m(C3

n) ≥ 9, m(C4
n) ≥ 20.

In case r = 2, by choosing (i, j) = (1, 1), we obtain a sequence of length
4 = 1·2+2·1. In case r = 3, by choosing (i, j) = (1, 2), we obtain a sequence
of length 9 = 1 · 3 + 2 · 3. And in case r = 4, by choosing (i, j) = (1, 3), we
obtain a sequence of length 20 = 1 · 8 + 2 · 6.

The application with (i, j) = (2, 3) yields a sequence of length 42 =
3 · 6 + 3 · 8 for r = 5. The application with (i, j) = (3, 3) yields a sequence
of length 96 = 6 · 8 + 8 · 6 for r = 6. And the application with (i, j) = (4, 3)
yields a sequence of length 196 = 14 · 6 + 14 · 8 for r = 7. Consequently we
have

m(C5
n) ≥ 42, m(C6

n) ≥ 96, m(C7
n) ≥ 196,

which proves Theorem 1.
Rackham found the same bound for rank 5 independently [9].

4 Sequences over Cr
n and Ternary Affine Caps

A relation between sequences over {0, 1, 2} of length 3 and ternary affine caps
is not new, e.g. the widely known results of Calderbank and Fishburn [4]
and of Meshulam [16] on affine ternary caps were formulated in the language
of sequences. Also in the more general case there is some straightforward
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relation between sequences over Cr
p and sets in AG(r, p). Define supp(S) :=

{g ∈ Cr
p | vg(S) > 0} ⊂ Cr

p the support of the sequence S. For prime p

• we have Cp the additive group of Fp,

• identify G = Cr
p with the points of AG(r, p),

• A sequence S leads to the subset of points of AG(r, p) in supp(S),

• A zero-sum subsequence T :
∑

g∈G vg(T )g = 0 of length p= exp(Zr
p)

corresponds to a nontrivial, vanishing, affine linear combination of
points in AG(r, p). (By identifying vg(T ) ∈ {0, . . . , p − 1} and Fp

canonically.)

In F3 the only affine linear combinations with at most three coefficients,
λ1, λ2, λ3, are:

• {λ1, λ2} = {1, 2}. Such a linear combination vanishes iff the two points
are equal.

• (λ1, λ2, λ3) = (1, 1, 1) or (2, 2, 2). Here the first linear combination
vanishes iff the second linear combination vanishes.

This immediately leads to the following Lemma showing the equivalence
of sequences over Cr

3 without zero-sum subsequences of length 3 and affine
caps in AG(r, 3).

Lemma 20. • If a sequence S over Cr
3 has no zero-sum subsequence of

length 3 then R = supp(S) is an affine cap in AG(r, 3).

• If R is an affine cap in AG(r, 3) then S = R2 has no zero-sum subse-
quence of length 3.

• s(Cr
3) = ma

2(r, 3) · 2 + 1.
(ma

2(r, 3) being the maximal size of a cap in AG(r, 3)).

So the constructed series in Cr
n are, for n = 3, affine ternary caps. We

have already mentioned in the introduction that for r = 1, 2, 3, 4 we get caps
of maximal size this way, while for larger r better ternary caps are known.
Let us have a closer look at the case r = 5.

The ternary 42-cap from the sequence is complete as a cap in AG(5, 3)
and extendable to a complete 48-cap in PG(5, 3), which is the size of the
second largest complete cap in PG(5, 3) (see [1]). By Theorem 2 we know
that 42 is the size of the second largest complete cap in AG(5, 3). As a
consequence and due to the uniqueness of the maximal affine 45-cap (see
[6]) we have that, if we can construct a larger sequence with property D′ for
all odd n, its restriction to n = 3 is contained in the affine part of the Hill
cap.

For the proof of Theorem 2 we need the following Lemma:
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Lemma 21. For every 43-cap K in AG(5, 3), there exists a pair of parallel
hyperplanes H0,H1 such that H0 intersects K in at least 18 points and H1

intersects K in at least 17 points.

Proof. For a n-cap K in AG(k, q) denote by ni the number of hyperplanes H
in AG(k, q) with |K∩H| = i. Simple counting arguments yield the following
identities: ∑

i

ni =
qk+1 − 1

q − 1
− 1,

∑
i

ini = n
qk − 1
q − 1

,

∑
i

(
i

2

)
ni =

(
n

2

)
qk−1 − 1

q − 1
,

∑
i

(
i

3

)
ni =

(
n

3

)
qk−2 − 1

q − 1
.

Using these identities, for a 43-cap in AG(5, 3), we see that we have∑
i f(i)ni = 0 for the polynomial f(X) := 2541

(
X
3

)
− 31581

(
X
2

)
+ 2019409.

As we are in AG(k, 3) the hyperplanes are grouped in triples of parallel
hyperplanes which partition the cap. We want to have a closer look at the
contribution of a triple of parallel hyperplanes to

∑
i f(i)ni. We say that

a triple of parallel hyperplanes has type (a, b, c) if the hyperplanes of that
triple intersect the cap in a, b respectively c points. The maximal number
of points of the cap in a hyperplane is the maximal size of a cap in AG(4, 3),
i.e. 20 [14].

It is easily verified that for integers 20 ≥ a ≥ 18 and 20 ≥ b ≥ 17 we
have that f(a) + f(b) + f(43 − a − b) < 0. For all other possible types
(a, b, c) of triples (i.e. (17,17,9) or integers 20 ≥ a ≥ b ≥ c = 43− a− b ≥ 0
with b < 17) we have f(a) + f(b) + f(43− a− b) > 0. As the sum over all
occurring triples of parallel hyperplanes is zero, triples of type (a, b, c), with
20 ≥ a ≥ 18 and 20 ≥ b ≥ 17 have to exist.

With this we are ready to give the

Proof of Theorem 2. We already have seen that the 42 points from the se-
quence obtained from Theorem 16 with the pairs (A(2), B(2)), (A(3), B(3))
of Lemma 19, viewed modulo 3, are a 42-cap in AG(5, 3). The completeness
of this cap can easily be verified by computer.

As we know that 45 is the largest size of a cap in AG(5, 3) (see [6]) it
remains to show that there are no complete 43 and 44-caps in AG(5, 3).

From [17, 14], we know that there is a unique 20-cap in AG(4, 3). A
computer search for all 18 and 19-caps in AG(4, 3) showed that there is a
unique 19-cap and that there are 19 different 18-caps in AG(4, 3). Based on

12



this classification we use a similar computer search as in [5, 6] to prove the
non-existence of complete 43 or 44-caps for all cases occurring in Lemma
21.
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