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Abstract
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1 Introduction

One of the results of the seminal paper [6] is a description of a class of
quantum codes, the quantum stabilizer codes, in terms of certain additive
quaternary codes. Additive quaternary codes are defined over an alpha-
bet of 4 letters and linear over the binary field F2. A generalization of this
mechanism from base field F2 to base field Fq was first defined in [3], Defi-
nition 1. This results in a description of q-ary quantum stabilizer codes in
terms of q2-ary Fq-linear codes. A theory of cyclic q-ary quantum stabilizer
codes is developed in [3] as well. The definition of q2-ary Fq-linear quantum
stabilizer codes [[n, k, d]]q has been rediscovered in various occasions in the
meantime. In the classical quaternary case (observe that the ground field is
F2) an equivalent geometric formulation in terms of sets of lines in binary
projective spaces has been given in [5], see also [10]. In the present paper
we concentrate on the special case of linear q-ary quantum codes where the
q2-ary codes are indeed Fq2−linear.

Definition 1. A linear q2-ary quantum stabilizer code is a subspace C ⊂ Fn
q2

such that C ⊆ C⊥ where duality is with respect to the Hermitian inner product.

Here the Hermitian inner product of x = (x1, . . . , xn) and y = (y1, . . . , yn)
is 〈x, y〉 =

∑n
i=1 xiy

q
i . The reason for this definition is that a linear q2-ary

quantum stabilizer code C of length n, dimension m and dual distance ≥ d
(equivalently: of strength > d) allows the construction of a pure quantum
stabilizer code [[n, n− 2m, d]]q (see [3], Theorem 1). Consider the geometric
description of the linear q2-ary code C: the columns of a generator matrix
describe a set of n points in PG(m−1, q2) such that any d−1 of those points
are in general position (they generate PG(d−2, q2)). If this is satisfied, then
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C from Definition 1 (of dimension m and strength d− 1) defines a quantum
code [[n, n− 2m, d]]q.

The paper is organized as follows: in Sections 2,3 we consider q-ary quan-
tum stabilizer codes for an arbitrary prime-power q. In Section 2 we show
that self-orthogonal linear q-ary codes allow the construction of q-ary quan-
tum stabilizer codes (Theorem 1). Theorem 2 in Section 3 is a projection
construction which generalizes Theorem 7 of [6] from the binary case to the
case of an arbitrary prime-power q. From then on we restrict to the binary
case q = 2 and abbreviate the parameters of binary quantum stabilizer codes
[[n,m, d]]2 by [[n,m, d]]. Recall that the equivalent coding-theoretic descrip-
tion is in terms of quaternary additive codes. We restrict to the special case
that this quaternary code is in fact F4-linear.

In Section 4 the notion of a quantum cap is defined. This is the geometric
expression for distance 4 F4-linear pure quantum codes (see Theorem 3). The
remainder of the paper is a systematic study of quaternary quantum caps
in low-dimensional projective spaces. Equivalence of caps in PG(m − 1, 4)
is with respect to the group PΓL(m, 4). We start in Section 5 by showing
that there are no quantum n-caps of cardinality n < 6 in any space PG(m−
1, 4), and there is precisely one quantum 6-cap, the hyperoval in PG(2, 4).
In Section 6 some elementary recursive constructions for quantum caps are
discussed. Section 7 contains a complete census of the quantum caps in
PG(3, 4). They exist of cardinalities 8, 12, 14 and 17. For each cardinality
there is precisely one such cap. We determine also the automorphism groups
and give various different constructions. One motivation is that those caps
can be used as ingredients for the construction of quantum caps in higher-
dimensional spaces via the recursive constructions. In Section 8 we study
quantum caps in PG(4, 4). One main result is the complete determination of
all cardinalities n for which quantum caps exist in PG(4, 4), see Theorem 10.
We close in Section 9 with a construction for small quantum caps in spaces
of arbitrary dimension.

2 Quantum subfield subcodes

Theorem 1. Let G a generator matrix of a self-orthogonal linear q-ary code
D ⊆ D⊥ of parameters [n,m, d]q where duality is with respect to the Eu-
clidean bilinear form (the dot product). Seen over Fq2 , matrix G generates
an [n,m, d]q2-code which is a quantum code. If the q2-ary code has strength
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t, then the quantum parameters are [[n, n− 2m, t+ 1]]q.

Proof. The definition of the Hermitian inner product shows that the q2-ary
code C generated by G is Hermitian self-orthogonal. Code C is Galois closed
(for the notion of a Galois closed linear code see Section 12.3 of [2]) and D
is its subfield code. If D is an [n,m, d]q-code, then C is an [n,m, d]q2-code
(see [2], Theorem 12.17). It therefore defines a linear q2-ary [[n, n− 2m, d]]q-
quantum code.

As an example consider the ternary Golay code, a self-dual [12, 6, 6]3-
code. By Theorem 1 it defines a 9-ary quantum code with the same pa-
rameters and therefore a [[12, 0, 6]]3-quantum code. Another example is
the extended binary Hamming code [8, 4, 4]2 (geometrically: the points of
PG(3, 2) \ PG(2, 2)) which defines a Hermitian self-dual [8, 4, 4]4-code. Ge-
ometrically it is represented by a set of 8 points in PG(3, 4). Any 3 of those
points are in general position, meaning that they are not collinear. We will
speak of a quantum 8-cap below, see Definition 4. In particular this defines
a binary [[8, 0, 4]] quantum code.

3 Quantum codes by projection

Definition 2. Let N : Fq2 −→ Fq the norm (N(x) = xq+1). Let C be an Fq2-
linear code of length n. The norm code of C is the code N(C) ⊆ Fn

q spanned
over Fq by the norms N(u) = (N(u1), . . . , N(un)) where u = (u1, . . . , un) ∈ C.
Denote by N(C)⊥ its dual with respect to the Euclidean bilinear form.

Lemma 1. Let the Hermitian bilinear form be defined on Fn
q2 by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
∑
xiy

q
i . Let C ⊂ Fn

q2 a linear code. Then C is
self-orthogonal with respect to the Hermitian form if and only if 〈u, u〉 = 0
for all u ∈ C.

Proof. Assume 〈u, u〉 = 0 for all u ∈ C, let u, v ∈ C, λ ∈ Fq2 . Then

0 = 〈λu+ v, λu+ v〉 = 〈λu, v〉+ 〈v, λu〉 = T (λ〈u, v〉)

where T (α) = α+ αq is the trace : Fq2 −→ Fq. It follows that α = 〈u, v〉 has
the property T (λα) = 0 for all λ ∈ Fq2 . This shows α = 0.

Theorem 2. Let C ⊂ Fn
q2 a linear code and u ∈ N(C)⊥. Then the projection

from C to the support of u is equivalent to a linear q2-ary quantum stabilizer
code in the sense of Definition 1.
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Proof. Assume the support of u consists of the first m coordinates. By code
equivalence it can be assumed u = (1, 1, . . . , 1, 0, . . . , 0). Let u, v ∈ C and π
the projection to the first m coordinates. We have to show 〈π(u), π(v)〉 = 0
for all u, v ∈ C. By Lemma 1 it suffices to show 〈π(u), π(u)〉 = 0 for all u ∈ C,
equivalently

∑m
i=1 uiu

q
i =

∑m
i=1N(ui) = 0 which is satisfied by definition of

the norm code.

In particular C itself is a linear q2-ary quantum stabilizer code if and only
if N(C)⊥ contains the all-1-word, and it is equivalent to such a quantum code
if and only if N(C)⊥ contains a word of full weight n. Theorem 7 of [6] is
the special case of Theorem 2 when q = 2 and C itself is a linear quaternary
quantum stabilizer code. Observe that in case q = 2 the self-orthogonality
condition is independent of code equivalence. This follows from the fact that
λq+1 = λ3 = 1 for all 0 6= λ ∈ F4. For q > 2 the self-orthogonality condition
is not independent of the choice of generators of the projective points in the
geometric description of C. This is one motivation to restrict further to the
linear quaternary case (case q = 2 of Definition 1) in the sequel.

4 Quaternary quantum caps

The spectrum of quaternary quantum codes of distances d ≤ 3 is completely
known, see [16]. We consider the first open case of distance d = 4. The points
of PG(m− 1, 4) describing the columns of a generator matrix of C have the
property that no three are on a line.

Definition 3. A point set in PG(k, q) is a cap if no three points are on a
line.

For a recent survey concerning caps in projective Galois spaces see [4].
Definition 3 leads to the following notion:

Definition 4. A set of n points in PG(m − 1, 4) is pre-quantum if it
satisfies the following equivalent conditions:

• The corresponding quaternary [n,m]4-code has all its weights even.

• Each hyperplane meets the set in the same parity as the cardinality of
the set.
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It is quantum if in addition it is not contained in a hyperplane. It is a
quantum cap if moreover it is a cap.

It is in fact easy to see that the conditions in Definition 4 are equivalent.
The translation from coding-theoretic to geometric language is given by the
following (see [5]):

Theorem 3. The following are equivalent:

• A pure quantum code [[n, n− 2m, 4]] which is linear over F4.

• A quantum n-cap in PG(m− 1, 4).

5 The smallest quantum cap

It is an elementary and important fact that the hyperoval in PG(2, 4) is the
only quantum cap in projective dimension ≤ 2.

Proposition 1. There is no quantum cap in the projective line. The only
quantum cap in PG(2, 4) is the hyperoval. This is the uniquely determined
smallest quantum cap in any projective dimension.

Proof. It is immediately clear that sets of one or two points in PG(1, 4) are
not quantum. All caps in PG(2, 4) are contained in the hyperoval. For any
proper subset K of the hyperoval there are lines avoiding the set as well as
tangents. This shows that K is not quantum. Consider a quantum cap K
of size n ≤ 6 in PG(m, 4),m ≥ 3. As the quantum cap has to generate the
ambient space, we have n ≥ 4. Observe that a contradiction is obtained if
we can find hyperplanes intersecting K in different parities. This is the case
in particular if K is in general position. Case n = 4 is therefore excluded.
If n = 5 and K is not in general position, then m = 3 and either K is a
coordinate frame or K ⊂ PG(3, 4) has some 4 points on a plane. The latter
case contradicts the definition of a quantum cap. In the former case it is
easy to see that there are planes meeting K in 3 points and also there are
planes meeting K in 2 points, contradiction. Let finally n = 6. If m = 3, then
some 4 points are in a plane Π. Let l ⊂ Π be a line meeting K in precisely
one point. It follows that one of the 5 planes containing l must meet K in
just one point. This contradicts the definition of a quantum cap. If m = 5,
then K is in general position and a contradiction results. The last case is
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m = 4. Let Π be a plane meeting K in precisely 3 points. Each of the 5 solids
containing Π must pick up at least one additional point of K. This yields the
contradiction |K| ≥ 3 + 5.

K(2, 6)
100 111
010 132
001 123

The quantum code described by the hyperoval has parameters [[6, 0, 4]].

6 Recursive constructions

The most obvious recursive construction is the following:

Theorem 4. Let K1, K2 be disjoint pre-quantum sets in PG(m−1, 4). Then
K1 ∪K2 is pre-quantum.

Let K1 ⊂ K2 be pre-quantum sets. Then also K2 \K1 is pre-quantum.

The proof is trivial.

Theorem 5. Let Π1,Π2 be different hyperplanes of PG(m, 4) and Ki ⊂ Πi be
pre-quantum caps such that K1∩Π1∩Π2 = K2∩Π1∩Π2. Then the symmetric
sum K1 +K2 = (K1 \K2) ∪ (K2 \K1) is a pre-quantum cap.

Proof. As K = K1 + K2 does not meet Π1 ∩ Π2, it is a cap. Only the
quantum condition needs to be verified. The pre-quantum conditions of
K1 ⊂ Π1 and K2 ⊂ Π2 imply that |K| is even. Let H be a hyperplane. If
H contains Π1 ∩ Π2, then either H is different from Π1,Π2 and H ∩K = ∅
or H = Πi, i = 1, 2 and |H ∩ K| is even because of the quantum condition
satisfied by Ki ⊂ Πi. Assume H does not contain Π1∩Π2. Then H meets each
of Π1,Π2,Π1∩Π2 in a hyperplane. By the pre-quantum condition applied to
Ki ⊂ Πi it follows that the sets (K1 ∩K2) \H,K1 \ (K2 ∪H), K2 \ (K1 ∪H)
all have the same parity.

Here are two applications of Theorem 5: Let Ki ⊂ Ei be hyperovals in
planes Ei of PG(3, 4), i = 1, 2. If E1 ∩ E2 is an exterior line of both K1 and
K2, then K1 ∪ K2 is a quantum 12-cap in PG(3, 4). If K1 and K2 meet in
two points, then K1 +K2 is a quantum 8-cap.
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Theorem 6. Π1,Π2 be different hyperplanes of PG(m, 4), S = Π1 ∩ Π2. Let
K1 ⊂ Π1 be a quantum cap in Π1 and K2 ⊂ Π2 \ S an (affine) pre-quantum
cap. Assume K2 ∪ (K1 ∩ S) is a cap. Then K1 ∪K2 is a quantum cap.

Proof. K1 ∪ K2 is pre-quantum by Theorem 4. It is a cap if and only if
K2 ∪ (K1 ∩ E) is a cap. Clearly it is not contained in a hyperplane.

Theorem 6 applies in particular when |K1 ∩ S| = 1 and K2 is a pre-
quantum cap which can be extended to a cap by a point in the secundum
S.

Theorem 7. Let Π1,Π2 be different (m−2)-dimensional subspaces of PG(m, 4)
which together generate PG(m, 4). Let Ki ⊂ Πi be pre-quantum caps such
that K1 ∩ Π1 ∩ Π2 = K2 ∩ Π1 ∩ Π2. Then the symmetric sum K1 + K2 is a
pre-quantum cap.

7 Quantum caps in PG(3, 4)

Recall that equivalence is with respect to the action of the group G =
PΓL(4, 4) of order g = 213(44 − 1)(43 − 1)(42 − 1) = 213 × 34 × 52 × 7× 17.

Theorem 8. The sizes of quantum caps in PG(3, 4) are 8, 12, 14 and 17.
For each of these cardinalities there is up to equivalence exactly one such
quantum cap.

The unique quantum cap in projective dimension 2, the hyperoval in
PG(2, 4), will be denoted by K(2, 6), see Section 5. The quantum caps in
PG(3, 4) will be denoted K(3, 8),K(3, 12),K(3, 14),K(3, 17). Let Gi be the
automorphism group of K(3, i) (the stabilizer in G) and gi = |Gi|. Denote
by aj the number of planes meeting K in cardinality j (the j-planes). In the
remainder of this section we prove Theorem 8 and give various descriptions
of those four quantum caps.

The elliptic quadric K(3, 17).

The upper bound is obvious: it is known that the unique largest cap in
PG(3, 4) is the elliptic quadric of 17 points, see [13]. As it meets each hy-
perplane in 1 or 5 points, it follows that the elliptic quadric in PG(3, 4) is
indeed quantum. G17 has order g17 = 16320 = 17× 16× 15× 4 and contains
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the simple group SL(2, 16) in its sharply triply transitive action on K(3, 17).
Clearly a1 = 17 and a5 = 68.

It is known that caps of size 15 or 16 are embedded in the elliptic quadric.
It follows that such caps cannot be quantum (see Theorem 4). Because of
Proposition 1 we are reduced to cardinalities between 7 and 14.

A standard counting method is secundum counting: in the case of
PG(3, 4) a secundum is a line. We fix a secant line and study the distribution
of points on the 5 planes through the secant. In the case of cardinality 13
this shows, because of the quantum condition (see Definition 4), that each
secant is contained in precisely 3 planes meeting the cap in 5 points. The
number of such planes is therefore

(
13
2

)
×3/10, contradiction. Cardinality 9 is

excluded by the same argument. For cardinality 7 this argument shows that
any 4 points are in general position. This defines a [7, 4]4-code whose dual
has parameters [7, 3, 5]4 contradicting the Griesmer bound. For cardinality
11, let ei, i = 1, 3, 5 be the number of planes meeting K in i points. By
secundum counting we obtain e5 = 11, e3 = 55. This implies e1 = 19. On
the other hand, let P ∈ K. Consider the pairs (g, E) where g is a secant,
P ∈ g, g ⊂ E and E a 5-plane. There are 10 × 2 such pairs. This shows
that P is contained in five 5-planes. An analogous count shows that P is in
fifteen 3-planes. This shows that P must be on one 1-plane which yields the
contradiction e1 = 11 6= 19. On the non-existence side it remains to exclude
cardinality 10.

Lemma 2. There is no quantum 10-cap in PG(3, 4).

Proof. Let K be such a quantum 10-cap. Observe that planes intersect K in
0, 2 or 4 points. In fact, a hyperoval as intersection is excluded as otherwise
the complement of the hyperoval in K would be a quantum 4-cap in PG(3, 4)
or in PG(2, 4), which is not possible. The standard counting argument based
on secant lines shows that each secant is in precisely four 4-planes. There
are 30 such planes and they define a Steiner system S(3, 4, 10). A generator
matrix can be given the form

1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 1 0


where the missing entries are nonzero. Let ci, i = 1, . . . , 10 be the columns
of this matrix and Pi ∈ PG(3, 4) the corresponding points. Comparison

9



with the first row shows that in each of the remaining rows the four entries
to be determined must be such that each entry occurs twice or not at all.
Consider rows zi, zj where i, j ≥ 2. Then zi + zj shows that the triples of
nonzero entries in cordinates k ≥ 6 where both zi and zj have nonzero entries
agree in precisely one coordinate. Further zi + λzj for λ 6= 0, 1 show that
those triples satisfy the proportionality condition: if the triples are abc and
ade, respectively, then d/b = e/c. As an example, let z2 = 010010uabc, z3 =
00101v0ade. Then z2 + z3 = (01100vu0, b + d, c + e) and z2 + ωz3, z2 + ωz3
yield the proportionality condition.

No two of the ci, i ≥ 5 can agree in more than 2 coordinates as otherwise
those two points would be collinear with a Pi, i ≤ 4.

Clearly we can choose the basis such that z1 + z2 has weight 6. This
means that two of the remaining entries in z2 are 1. By applying a field
automorphism the two last entries can be chosen as ω. There are three non-
equivalent possibilities how the entries 1 can be distributed. Assume at first

1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 0 1 1 ω ω
0 0 1 0 1 a 0 b c d
0 0 0 1 1 0


Then c 6= d. Case b = 1 is impossible as the proportionality condition is

not satisfied. We can choose c = ω. It follows (a, b, c, d) = (ω, ω, ω, ω). The
entries in the last row are efef and cannot be completed.

Next consider 
1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 0 ω ω 1 1
0 0 1 0 1 a 0 b c d
0 0 0 1 1 0


Clearly b = ω and a = 1 are impossible. We have b = 1. By proportion-

ality a = ω and we have
1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 0 ω ω 1 1
0 0 1 0 1 ω 0 1 ω 1
0 0 0 1 1 0


and this cannot be completed. Finally consider the case
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1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 0 1 ω 1 ω
0 0 1 0 1 a 0 b c d
0 0 0 1 1 0


c = 1 is impossible as then b = d. If d = ω, then c = bω. It follows b = ω

and this cannot be completed. This shows b = ω and c = dω. It follows
1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 0 1 ω 1 ω
0 0 1 0 1 ω 0 ω ω ω
0 0 0 1 1 e x 0 y f


The assumption x = e, y = f leads to a contradiction. We have x =

f, y = e. The proportionality condition yields e = ω, f = 1. The matrix is
1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 0 1 ω 1 ω
0 0 1 0 1 ω 0 ω ω ω
0 0 0 1 1 ω 1 0 ω 1


Here the first and the two last points are collinear, contradiction.

The quantum 8-cap K(3, 8).

Clearly a quantum 8-cap K cannot contain a hyperoval. It follows that each
secant is on 3 planes meeting K in cardinality 4. There are therefore 14
such planes and they define a Steiner system S(3, 4, 8). Write a generator
matrix in the form (I|P ). Then P has one entry zero in each column, and

these occur in different rows. We have the form


1 0 0 0 0 1 1 1
0 1 0 0 1 0 a b
0 0 1 0 1 c 0 d
0 0 0 1 1 e f 0


(without restriction). Comparison of the first row with the others shows
a = b, c = d, e = f. Comparison of the later rows shows a = · · · = f( 6= 0). A
final obvious manipulation produces the standard generator matrix (I|I+J)
of the extended Hamming code. We see that K is uniquely determined as
constructed in Section 2. We define K = K8 to consist of the vectors of
odd weight in F4

2 when interpreted as points in PG(3, 4). The automorphism
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group G8 has then the form G8 = E8GL(3, 2) × Z2 of order g8 = 16 × 168,
the direct product of its center (generated by the Frobenius automorphism)
and the stabilizer of a plane (the plane x1 + x2 + x3 + x4 = 0) in GL(4, 2).
In particular there are precisely g/g8 = 64 × 27 × 25 × 17 copies of K8 in
PG(3, 4). The group G8 is 3-transitive on the points of the cap.

Here is a different description of K8: choose hyperovals O1,O2 on two
planes which share a common secant. The symmetric sum O1 + O2 is then
a quantum cap. This is a special case of Theorem 5. It follows that we have
a copy of K(3, 8). Clearly a4 = 14, a2 = 56, a0 = 15. Recall also Section 2
where K(3, 8) was constructed as an application of Theorem 1. For future
reference we think of K(3, 8) as the set of points in PG(3, 4) represented by
the vectors of weights 1 or 3 with entries in F2.

The quantum 14-cap K(3, 14)

A 14-cap contained in the elliptic quadric cannot be quantum as otherwise
the complementary set of 3 points would have to be pre-quantum (see The-
orem 4). It is known that there is only one 14-cap which is not embedded.
This is the complete 14-cap and it is quantum. The complete 14-cap and its
automorphism group were described in [7]. Here we want to describe it from
scratch.

Proposition 2. The complete 14-cap in PG(3, 4) is the disjoint union of
K(3, 8) and a hyperoval in a plane.

Proof. Secundum counting shows that each secant of K must be contained in
a plane which meets K in a hyperoval. In particular K contains hyperovals.
It follows from Theorem 4 that its complement in K must be a quantum
8-cap and therefore a copy of K(3, 8).

Let X be the set of points in PG(3, 4) extending K(3, 8) to a 9-cap.
A moment’s thought shows that X consists of the points generated by the
vectors of weight 3 whose nonzero entries are pairwise different and by the
weight 4 vectors whose entries sum to 0. It follows |X| = 8 + 6 = 14 and X
is contained in the plane H : x1 + x2 + x3 + x4 = 0. In fact X consists of the
points of H which are not in the Fano subplane of H consisting of its points
with coordinates in F2. This shows the following:

Proposition 3. Let H be the plane x1 + x2 + x3 + x4 = 0 and E its Fano
subplane consisting of points with coordinates in F2. Then K(3, 8)∪Y is a cap
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in PG(3, 4) if and only if Y ⊂ H, Y ∩E = ∅ and Y is a cap, and K(3, 8)∪Y
is a quantum cap if and only if moreover Y is a hyperoval.

Recall that PG(2, 4) and its hyperovals and Fano planes play a central role
in the construction of the large Witt design as it is described for example
in Hughes-Piper [12]. There are 360 Fano planes and 168 hyperovals in
PG(2, 4).

Proposition 4. Each Fano plane E ⊂ PG(2, 4) is disjoint from 7 hyperovals.
Here each point P ∈ E determines a hyperoval disjoint from E which consists
of the points off E in the union of the bundle of lines of E that concur in P.

Proof. Each of the 7 lines of E contains two points /∈ E. A hyperoval disjoint
from E must be the union of three such pairs of points from three lines of
E. The fact that E is a blocking set in PG(2, 4) shows that a hyperoval is
obtained if and only if those three lines are concurrent.

Theorem 9. Each K(3, 8) is contained in precisely seven K(3, 14). Each
K(3, 14) contains precisely seven copies of K(3, 8) and seven hyperovals. We
have g14 = g8 = 27 × 3 × 7. Each pair of hyperovals intersects in a secant,
and this secant is in precisely three hyperovals.

Proof. Propositions 3 and 4 show that K(3, 8) is in precisely 7 copies of
K(3, 14). Fix K = K(3, 14). Let aj be the number of planes meeting K in
cardinality j (the j-planes), where j ∈ {0, 2, 4, 6}. Let l be a secant of K. If
l is in j of the 6-planes, then it is in 6 − 2j of the 4-planes and in j − 1 of
the 2-planes. It follows j ∈ {1, 2, 3}. Let lj be the corresponding number of
secants. Then l1 + l2 + l3 =

(
14
2

)
= 91 and the obvious equations expressing

a2, a4, a6 in terms of the li have a unique solution:

a6 = 7, a4 = 56, a2 = 14, a0 = 8.

Each pair of hyperovals contained in K must intersect in a secant. The
symmetric sum of those two hyperoval is a copy of K(3, 8). It follows that
the secant is on a third hyperoval. In terms of the system of equations this
implies l3 = 7, l2 = 0, l1 = 84.

This indicates also how to construct K(3, 14) in terms of hyperovals: there
is a configuration in PG(3, 4) consisting of three collinear planes and a hy-
peroval in each plane, where all hyperovals share the same two points on the
line of intersection. The symmetric sum of two hyperovals is then K(3, 8)
and the union of all three hyperovals is K(3, 14).
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The quantum 12-cap K(3, 12)

Assume K does not contain a hyperoval. Then K intersects each plane
in at most 4 points. This yields a [12, 4, 8]4-code. Concatenation with a
[4, 2, 3]2-code yields a [48, 8, 24]2-code. This contradicts the Griesmer bound.
It follows that K contains a hyperoval O. Proposition 1 shows that K \ O
is a hyperoval as well, so K is the disjoint union of two hyperovals. Each
hyperoval is in a plane and those planes intersect in a line avoiding K, see
the construction in the previous section. It is easy to see that K is uniquely
determined. The fact that each PG(2, 4) contains precisely 168 hyperovals
and that each line in PG(2, 4) is disjoint from 48 hyperovals shows that the
total number of K(3, 12) in PG(3, 4) is 85×168×6×4×48/2 = g/240. This
shows g12 = 240. Obvious counting arguments show

a6 = 2, a4 = 45, a2 = 30, a0 = 8.

8 Quantum caps in PG(4, 4).

Let F4 = {0, 1, ω, ω}. In this section we will write for brevity 2 = ω, 3 = ω.
Let G = PΓL(5, 4) of order g = 221 × 35 × 52 × 7× 11× 17× 31.

Theorem 10. Quantum n-caps in PG(4, 4) exist precisely for 10 ≤ n ≤ 41
such that n /∈ {11, 37, 39}.

The fact that n ≥ 10 follows from the self-orthogonality of the corre-
sponding code, see Definition 1. As an application of Theorem 7, choose
two planes Π1,Π2 in PG(4, 4) which meet in a point X. Let Ki ∪ {X} be a
hyperoval in Πi, for i = 1, 2. Then the symmetric sum K1 ∪K2 is a quantum
10-cap in PG(4, 4). The maximum size of a cap in PG(4, 4) is 41, there are
two such caps and one is quantum. Also, there is a uniquely determined
40-cap in AG(4, 4) and it is quantum (for these facts see [7, 8]). In partic-
ular the sizes of quantum caps in PG(4, 4) are in the interval 10 ≤ n ≤ 41.
Tonchev [15] starts from the quantum 41-cap and determines its quantum
subcaps, using Theorem 7 of [6]. This leads to quantum caps of sizes n ∈
{10, 12, 14 − 27, 29, 31, 33, 35} in PG(4, 4). This method has its limitations.
In fact, it follows from Theorem 4 and the fact that the smallest pre-quantum
cap has size 6 that this construction cannot yield caps of sizes between 36
and 40. Theorem 2 can be applied to the non-quantum 41-cap in PG(4, 4)
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as well. As the dual of its norm code has a word of weight 36, this yields a
quantum 36-cap in PG(4, 4).

Our proof that cardinalities 11, 37, 39 are excluded consists in an exhaus-
tive computer searches.

We are however more interested in conceptual geometric constructions.
In the present section we want to show that the theorems from Section 6 yield
transparent constructions for many quantum caps in PG(4, 4). At first apply
Theorem 5. If one of the ingredients is the elliptic quadric, we must choose
an elliptic quadric on the second hyperplane as well. This leads to quantum
24- and 32-caps. Apply Theorem 5 to the remaining ingredients. They all
possess planes with 0 or 2 or 4 intersection points and all but K(3, 8) also
contain a hyperoval. This leads to quantum caps of all even sizes between 12
and 28. Theorem 6 can be applied when K1 ⊂ Π1 is the elliptic quadric such
that E = Π1 ∩ Π2 is a tangent plane of K1, K1 ∩ E = {P} and K2 ⊂ Π2 \ S
a quantum cap in AG(3, 4) such that K2 ∪ {P} is a cap. As K(2, 6) and
K(3, 8) are affine (in AG(3, 4)) and can be extended by a point of the plane
at infinity, they may be used in the role of K2. This yields quantum caps of
sizes 17 + 6 = 23 and 17 + 8 = 25.

Description and classification

At the extremes of the interval the quantum caps tend to be almost uniquely
determined. We start with some results concerning quantum caps of size
≤ 12.

Theorem 11. There exist precisely two quantum 10-caps in PG(4, 4).

Theorem 11 has been proved by an exhaustive search. We denote those
two caps by K(4, 10, 1) and K(4, 10, 2), where K(4, 10, 1) is the cap derived
from Theorem 7. Using the facts that PG(4, 4) has 341 = 11 × 31 points,
that PG(3, 4) has 357 = 3×7×17 lines and 27×3×7×17 pairs of skew lines
and that each point of PG(2, 4) is in 48 hyperovals, we see that the orbit of
K(4, 10, 1) has length 341×(27×3×7×17)×482 = 215×33×7×11×17×31.
This shows that the automorphism group of K(4, 10, 1) has order g4,10,1 =
26 × 32 × 52. We can give a characterization of the second quantum 10-cap:

Theorem 12. There is precisely one quantum 10-cap K(4, 10, 2) in PG(4, 4)
which contains a basis such that each set of 6 cap points containing the basis
is a frame. Its automorphism group is an extension of an elementary-abelian
group of order 32 by the symmetric group S5.
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K(4, 10, 2)
10000 11111
01000 13222
00100 12322
00010 12232
00001 12223

Proof. Let x denote the conjugate of x ∈ F4. A generator matrix has the
form (I, P ) where all entries of P are nonzero. Obviously the top row of P
can be chosen with all entries = 1. The quantum condition shows that all
other rows have one entry with frequency three, the remaining two nonzero
symbols precisely once. We can choose notation such that the entry with

frequency three is = 1. This yields without restriction

(
1 1 1 1 1
1 1 1 2 3

)
as

first rows. The rows ri of P satisfy ri · rj = δij. The cap code is self-dual

with respect to the Hermitian form. It follows that (P
t
, I) also is a generator

matrix. In particular the columns si of P satisfy si · sj = δij as well, and P
is invertible.

Assume there is a row with the same location for the repeated letter: 1 1 1 1 1
1 1 1 2 3
1 1 1 3 2

 .

We can arrange the first column to be constant 1. This forces the remain-
ing entries in s2, s3 to be 2, 3 :

1 1 1 1 1
1 1 1 2 3
1 1 1 3 2
1 2 3 c c
1 3 2 c c

 . Rows 3, 4 yield a contradiction. Assume there are

two rows such that the locations of the ones intersect in precisely one coor-
dinate. Then the orthogonality condition cannot be satisfied. It follows that
the locations of the triply repeated letter in two of the rows from r2 to r4
intersect in two coordinates. In particular the first three rows can be chosen
as  1 1 1 1 1

1 1 1 2 3
2 1 1 1 3

 .

It is impossible that the location of the repeated entry in row 4 contains
the intersection of the locations from rows two and three as the orthogonality
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condition is violated. The completion is now uniquely determined:

P =


1 1 1 1 1
1 1 1 2 3
2 1 1 1 3
1 1 2 1 3
1 2 1 1 3

 .

It is easy to obtain the generator matrix in standard form given above.
Consider the automorphism group. Let the points in PG(4, 4) defined by the
columns of the generator matrix be P1, . . . , P5 (of weight 1) and Q1, . . . , Q5.

Then f =


0 0 0 0 1
3 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0

 (in its action on columns from the left) maps

(P1, P2, P3, P4, P5)(Q1, Q2, Q3, Q4, Q5) and

v =


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 maps (P2, P3, P4, P5)(Q2, Q3, Q4, Q5).

There are 10 quadruples of points which are dependent and therefore in a
plane. They are Pi, Pj, Qi, Qj where 1 ≤ i < j ≤ 5. It follows that the
columns come in pairs {Pi, Qi}. The unions of two pairs are the dependent
quadruples, the unions of three pairs generate the 10 hyperplanes with 6
points each. This defines sets of 10 special planes and of 10 special solids,
where each special plane is on three special solids and also the other way
around. The bases satisfying the conditions of our theorem are those 32
bases that contain no pair. Because of uniqueness, the automorphism group
is transitive on those 32 bases. The kernel in the action on the five blocks is
an elementary-abelian group V of order 32 and G4,10,2/V ∼= S5. It is obvious
that we really have a cap.

Next we turn to quantum 12-caps. An exhaustive computer search showed
that there are precisely 5 non-equivalent quantum 12-caps in PG(4, 4). We
denote them by K(4, 12, 1), . . .K(4, 12, 5) and give synthetic descriptions.
Here K(4, 12, 1) = O1 ∪O2 where Oi is a hyperoval on plane Ei and E1 ∩E2

is a point not belonging to O1 or O2. Clearly there is only one such orbit.
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A trivial counting argument shows that the total number of those caps in
PG(4, 4) is (11× 17× 31)× 168× 15× 256× 120/2. It follows that the order
of the automorphism group is g4,12,1 = 28 × 9 = 2, 304.

The description of K(3, 8) ⊂ PG(3, 4) shows that each secant l to it is on
precisely two planes meeting K(3, 8) only in the points of l. It is therefore
possible to choose two hyperplanesH1, H2 in PG(4, 4), two points A,B on the
plane E = H1∩H2 and copies Ki ⊂ H1 of K(3, 8) such that Ki∩E = {A,B}.
The symmetric sum K1+K2 is then a quantum 12-cap in PG(4, 4). This leads
to the quantum caps K(4, 12, 2),K(4, 12, 3),K(4, 12, 4). The orders of their
automorphism groups are g4,12,2 = 12, g4,12,3 = 128, g4,12,4 = 768.

In order to describe K(4, 12, 5) start from two planes E1, E2 ⊂ PG(4, 4)
meeting in a point P. Let li be a line on Ei through P and Pi ∈ li, Pi 6= P.
Let E3 be the plane generated by l1 and l2. Let Oi be a hyperoval on Ei

through P, Pi and O a hyperoval on O through P, P1, P2. Then O1 +O2 +O
is a quantum set and a moment’s thought shows that it is a cap. This
describes K(4, 12, 5). The length of the orbit is (11× 17× 31)× 21× 256×
20 × 20 × 3 × 12 × 12/2. The order of the automorphism group is therefore
g4,12,5 = 26 × 3 = 192.

Consider now large quantum caps in PG(4, 4). We saw in the proof of
Theorem 10 that there is precisely one quantum 41-cap K(4, 41). This cap
had first been constructed by Tallini [14]. Its automorphism group is solv-
able of order 240 (see also [4]). There is precisely one complete 40-cap in
PG(4, 4). It is affine, the unique largest cap in AG(4, 4) [8] and it is the
unique quantum 40-cap K(4, 40) in PG(4, 4). The automorphism group of
K(4, 40) is a semidirect product of the elementary-abelian group E16 and A5.
An exhaustive computer search showed that there is precisely one quantum
38-cap K(4, 38). It is in the union of four hyperplanes H1, . . . , H4 through a
common plane E and it is defined as the union A1 ∪ · · · ∪A4 where Ai ⊂ Hi

is a copy of K(3, 14) and such that all Ai meet E in the same hyperoval.
This cap was constructed in [1]. In fact it can also be found inside the Glynn
126-cap in PG(5, 4) (see [9]. The [126, 6, 88]4code generated by the Glynn
cap has weight distribution A0 = 1, A88 = 945, A96 = 3087, A120 = 63. Each
of the 315 hyperplanes defined by codewords of minimum weight 88 inter-
sects the Glynn cap in a cap with 126− 88 = 38 points. These are copies of
K(4, 38). The automorphism group of the Glynn cap has order 120, 960 and
contains PGL(3, 4) as a subgroup of index 2. The automorphism group of
K(4, 38) has order 120, 960/315 = 384 = 27×3 and therefore agrees with the
stabilizer of K(4, 38) in the automorphism group of the Glynn cap.
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An exhaustive search showed that there are precisely two quantum 36-
caps in PG(4, 4). Here K(4, 38, 1) is contained in a bundle of three hyper-
planes H1, H2, H3 which meet in a common plane E. Let K1 ⊂ H1, K2 ⊂ H2

be elliptic quadrics such that K1 and K2 meet E in the same set O = V ∪{N}
of 5 points. Let K3 be a copy of K(3, 12) in H3 such that K3 ∩ E = V. We
have then K(4, 38, 1) = K1 ∪K2 ∪K3 \ {N}.

We do not have complete characterizations for the quantum caps of any
size between 13 and 35. It seems that those of odd size are harder to construct.
Theorems 5,6 need the elliptic quadric in a hyperplane as one of the two
ingredients. We therefore searched for quantum caps in PG(4, 4) intersecting
a hyperplane in an elliptic quadric. The cardinalities of the resulting quantum
caps are the odd numbers between 23 and 35. There is precisely one quantum
cap of 23 = 17 + 6 points containing the elliptic quadric (union of the elliptic
quadric and the hyperoval). This is an incomplete 23-cap. There is precisely
one quantum cap of 27 = 17 + 10 points containing the elliptic quadric. It is
incomplete and uses the 10-cap K(4, 10, 2). There are precisely two quantum
caps of 29 = 17 + 12 points, one complete and one incomplete. Both use
K(4, 12, 2) in the role of the affine 12-cap. There is precisely one quantum
35-cap containing an elliptic quadric in a hyperplane.

9 Quantum caps in higher-dimensional spaces

Obviously a lower bound on the size of a quantum cap in PG(m, 4) is 2(m+1)
(corresponding to linear [[2(m+1), 0, 4]] quantum codes). The quantum caps
K(2, 6) and K(4, 10, 2) belong to an infinite family which shows that quantum
2(m+ 1)-caps exist in PG(m, 4) when m is odd.

Theorem 13. PG(m, 4) for even m contains a quantum 2(m+ 1)-cap pos-
sessing m+ 1 points in general position such that each additional point com-
pletes it to a frame.

In fact, choose a generator matrix (I|P ) where P =


1111 . . .
1322 . . .
1232 . . .
1223 . . .
. . .

 .

Then it is easy to see that this generates a cap and that any two rows are
Hermitian orthogonal to one another.
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Theorem 14. PG(m, 4) for odd m ≥ 3 contains a quantum 2(m+ 1)-cap.

In fact, use (I|I + J) as generator matrix. The smallest member of the
family is K(3, 8) in PG(3, 4).

The largest known quantum caps in PG(5, 4), PG(7, 4), PG(9, 4) are also
the largest known caps in those spaces. These are the Glynn 126-cap in
PG(5, 4), a 756-cap in PG(7, 4) and a 5040-cap in PG(9, 4) (see [4]).
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