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Abstract

(t, m, s)−nets were defined by Niederreiter [6], based on earlier
work by Sobol’ [7], in the context of quasi-Monte Carlo methods of
numerical integration. Formulated in combinatorial/coding theoretic
terms a binary linear (m − k,m, s)2-net is a family of ks vectors in
Fm

2 satisfying certain linear independence conditions (s is the length,
m the dimension and k the strength: certain subsets of k vectors
must be linearly independent). Helleseth-Kløve-Levenshtein [5] re-
cently constructed (2r−3, 2r+2, 2r−1)2-nets for every r. In this paper
we give a direct and elementary construction for (2r−3, 2r+2, 2r+1)2-
nets based on a family of binary linear codes of minimum distance 6.

1 Introduction

Definition 1. Let s, m, k be natural numbers and Xi(w) ∈ Fm
2 for w =

1, 2, . . . , s, i = 1, 2, . . . , k. The Xi(w) define a (binary) linear (m− k,m, s)2-
net if the following independence condition is satisfied:
any subset F of k of the Xi(w) is linearly independent provided Xi(w) ∈ F
implies Xi−1(w) ∈ F for all w and i > 1.
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This notion can be generalized so as to allow also non-linear nets and nets
defined over arbitrary finite alphabets. The main application comes from the
fact that a binary linear net as in Definition 1 can be used to define a set
of 2m points in the unit cube in Euclidean s-space with extremal uniformity
properties, for use in numerical integration. We will work with Definition 1
exclusively. tms-nets are known under various names. They are special
cases of ordered orthogonal arrays (for an introduction see [4]) and they are
hypercubic designs (see [5]).

The Xi(w) for fixed w are said to form the elements of block B(w). The
length of a net is s, the dimension is m, the strength is k. The parameter
m− k is often denoted by the letter t.

Definition 1 implies that any k of the vectors X1(w) are linearly inde-
pendent, in other words the X1(w) form the columns of a check matrix of
a linear code [s, s−m, k + 1]2 (length s, codimension m, minimum distance
larger than k). It is therefore natural to start from such a check matrix,
use its columns as the first elements of the blocks and try to construct the
remaining elements X2(w), . . . , Xk(w) such that a net is obtained. This is
the problem of net embeddability of a linear code. A sufficient condition is
the Gilbert-Varshamov bound, see [4]. Helleseth-Kløve-Levenshtein [5] con-
structed (2r − 3, 2r + 2, 2r − 1)2-nets using a variant of net embedding of
primitive BCH-codes. In this paper we give a direct and elementary con-
struction for a family with slightly better parameters:

Theorem 1. There is a linear (2r − 3, 2r + 2, 2r + 1)2-net for every r > 2.

The construction is explicit, based on a non-primitive BCH-code [2r +
1, 2r − 2r, 6]2. It is similar to earlier constructions in [2, 3]. Theorem 1 is one
of the results announced in [4]. In the next section we give the construction
and proof.

2 Construction of the net

For arbitrary r > 2 consider the tower of finite fields

F2 ⊂ L = F2r ⊂ F = F22r

Let q = 2r. The length is s = 2r + 1. Let W ⊂ F be the multiplicative
subgroup of order s. As gcd(2r + 1, 2r − 1) = 1 we have W ∩ L = {1}. Let
the blocks be indexed by the elements w ∈ W.
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Consider the BCH-code C with A = {0, 1} as defining set. For information
on cyclic codes consult for example [1]. As the Galois closure of A contains
the interval {−2,−1, 0, 1, 2} it follows from the theory of cyclic codes that
C has minimum distance ≥ 6, equivalently that its dual has strength ≥ 5.
This means that the family of vectors (w, 1) ∈ F2r+1

2 have the property that
any 5 of them are linearly independent. Here w can be seen either as an
element of W ⊂ F or as an element of F2r

2 , when expanded with respect to
a basis of F over F2. We can use (w, 1) as first element of a block and try to
complete the net embedding. While we have not been able to construct such
an embedding we do obtain a net embedding after introducing an additional
coordinate.

Definition 2. Let w ∈ W. Choose α ∈ L \ F2 such that α2 + 1 is not of the
form w′ + 1/w′ for w′ ∈ W. The block X(w) is defined as follows:

X1(w) = (w, 1, 0), X2(w) = (αw, 0, 1), X3(w) = (0, 1, 1), X4(w) = (0, 0, 1)

and X5(w) = X1(w
′) for some w′ 6= w.

By Definition 1 we have to prove that any family F of 5 of the vectors
Xi(w) ∈ F2r+2

2 is linearly independent provided F consists of the first n1

vectors from some block, the first n2 vectors from some other block and so
forth, where n1 + n2 + · · · = 5. Order the ni such that n1 ≥ n2 ≥ . . . and
call (n1, n2, . . . ) the type of family F. The possible types are

(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1), (3, 1, 1), (3, 2), (4, 1), (5).

As we chose the BCH-code as point of departure, type (1, 1, 1, 1, 1) is inde-
pendent. The last coordinate shows that type (2,1,1,1) is independent as
well. Also, by the choice of X5(w), type (5) reduces to type (4, 1). It suffices
to prove that families of types (2, 2, 1) through (4, 1) are independent.

• Type (2, 2, 1)

Assume there is a linear combination of

(αw1, 0, 1), (αw2, 0, 1), (w1, 1, 0), (w2, 1, 0), (w3, 1, 0)

with coefficients λ1, . . . , λ5. As type (2, 1, 1, 1) has been considered already
we can assume λ1 = λ2 = 1. The middle coordinate shows λ3 + λ4 + λ5 = 0.
Assume at first λ5 = 0. Clearly λ3 = λ4 = 1. The first coordinate section
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yields the contradiction w1 = w2. We can therefore assume λ3 = λ5 = 1, λ4 =
0. The equation is

(α + 1)w1 + αw2 + w3 = 0.

Multiplication by w−1
1 shows that we can assume w1 = 1. We have α + 1 =

αw2+w3. Raising to power q yields α+1 = α/w2+1/w3, after multiplication
α2 + 1 = α2 + 1 + α(w2/w3 + w3/w2). Let x = w2/w3. Then 1 6= x ∈ W and
x + 1/x = 0. This yields the contradiction x2 = 1, hence x = 1.

• Type (3, 2)

The first coordinate-section shows that a non-trivial linear combination of

(0, 1, 1), (αw1, 0, 1), (αw2, 0, 1), (w1, 1, 0), (w2, 1, 0)

would contradict the fact that L ∩W = {1}.

• Type (3, 1, 1)

Consider a linear combination of

(0, 1, 1), (αw1, 0, 1), (w1, 1, 0), (w2, 1, 0), (w3, 1, 0).

Clearly λ1 = 1. The last coordinate shows λ2 = 1. The first coordinate
section shows λ4 = λ5 = 1. The middle coordinate yields λ3 = 1. We have
(α + 1)w1 = w2 + w3. As before we can assume w1 = 1. Raising to power
q + 1 we obtain (α + 1)2 = w2/w3 + w3/w2. Let x = w2/w3. By choice of α a
contradiction is reached.

Type (4, 1) is easy to check.
In order to complete the proof it remains to show that α can be chosen as

required in Definition 2. The function T : W → L defined by T (x) = x+1/x
is the restriction of the trace T : F → L to W. We have T (w) = 0 if and only
if w = 1. Moreover T (w) = T (1/w). It follows that precisely 2r−1 nonzero
elements of L have the form T (w) for some w ∈ W. This shows that α can
be chosen in the required way. The proof of Theorem 1 is complete.
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